Colored intersection types: a bridge between linear logic and higher-order model-checking

Charles Grellois (joint work with Paul-André Melliès)

PPS & LIAFA — Université Paris 7

TYPES conference — May 18th, 2015

Model-checking higher-order programs

A well-known approach in verification: model-checking.

- ullet Construct a model ${\mathcal M}$ of a program
- ullet Specify a property arphi in an appropriate logic
- Make them interact: the result is whether

$$\mathcal{M} \models \varphi$$

When the model is a word, a tree. . . of actions: translate φ to an equivalent automaton:

$$\varphi \mapsto \mathcal{A}_{\varphi}$$

Model-checking higher-order programs

For higher-order programs with recursion:

 ${\cal M}$ is a higher-order tree: a tree produced by a higher-order recursion schemes (HORS)

over which we run

an alternating parity tree automaton (APT) ${\cal A}_{arphi}$

corresponding to a

monadic second-order logic (MSO) formula φ .

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{if } x (L (\text{data } x)) \end{cases}$$

A HORS is a kind of deterministic higher-order grammar.

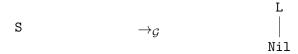
Rewrite rules have (higher-order) parameters.

"Everything" is simply-typed.

Rewriting produces a tree $\langle \mathcal{G} \rangle$.

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (\text{data } x)) \end{cases}$$

Rewriting starts from the start symbol S:



$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{if } x (L (\text{data } x)) \end{cases}$$



$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (\text{data } x)) \end{cases}$$

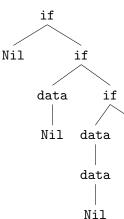
$$\begin{array}{c} \text{if} \\ \text{Nil} & \text{if} \\ \\ \text{data} & L \\ \\ \\ \text{data} \\ \\ \text{data} \\ \\ \text{Nil} \\ \end{array}$$

$$\begin{array}{c} \text{Nil} & \text{data } \\ \\ \text{data} \\ \\ \\ \text{Nil} \\ \end{array}$$

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{if } x (L (\text{data } x)) \end{cases}$$

 $\langle \mathcal{G} \rangle$ is an infinite non-regular tree.

It is our model \mathcal{M} .



$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (\text{data } x)) \end{cases}$$

HORS can alternatively be seen as simply-typed λ -terms with

free variables of order at most 1 (= tree constructors)

and

simply-typed recursion operators
$$Y_{\sigma}$$
: $(\sigma \Rightarrow \sigma) \Rightarrow \sigma$.

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (\text{data } x)) \end{cases}$$

HORS can alternatively be seen as simply-typed λ -terms with

free variables of order at most 1 (= tree constructors)

and

simply-typed recursion operators
$$Y_{\sigma}$$
: $(\sigma \Rightarrow \sigma) \Rightarrow \sigma$.

Here:
$$\mathcal{G} \iff (Y_{o \Rightarrow o}(\lambda L.\lambda x.if x (L(data x))))$$
 Nil

For a MSO formula φ ,

$$\langle \mathcal{G} \rangle \models \varphi$$

iff an equivalent APT \mathcal{A}_{φ} has a run over $\langle \mathcal{G} \rangle$.

APT = alternating tree automata (ATA) + parity condition.

Alternating tree automata

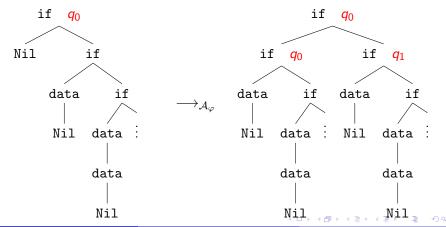
ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, \text{if}) = (2, q_0) \wedge (2, q_1)$.

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, \text{if}) = (2, q_0) \wedge (2, q_1)$.



Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically:
$$\delta(q_0, \text{if}) = (2, q_0) \wedge (2, q_1)$$
.

This infinite process produces a run-tree of \mathcal{A}_{φ} over $\langle \mathcal{G} \rangle$.

It is an infinite, unranked tree.

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

$$\delta(q_0, if) = (2, q_0) \wedge (2, q_1)$$

can be seen as the intersection typing

if :
$$\emptyset \Rightarrow (q_0 \wedge q_1) \Rightarrow q_0$$

refining the simple typing

if :
$$o \Rightarrow o \Rightarrow o$$

Alternating tree automata and intersection types

In a derivation typing if T_1 T_2 :

$$\mathsf{App} \overset{\delta}{\mathsf{App}} \frac{ \overline{\emptyset \vdash \mathtt{if} : \emptyset \Rightarrow (q_0 \land q_1) \Rightarrow q_0} \quad \emptyset}{ \emptyset \vdash \mathtt{if} \ T_1 : (q_0 \land q_1) \Rightarrow q_0} \quad \overline{ \begin{array}{c} \vdots \\ \hline \Gamma_1 \vdash T_2 : q_0 \end{array}} \quad \overline{ \begin{array}{c} \vdots \\ \hline \Gamma_1 \vdash T_2 : q_0 \end{array}}$$

Intersection types naturally lift to higher-order – and thus to \mathcal{G} , which finitely represents $\langle \mathcal{G} \rangle$.

Theorem (Kobayashi)

$$\emptyset \vdash \mathcal{G} : q_0$$
 iff the ATA \mathcal{A}_{φ} has a run-tree over $\langle \mathcal{G} \rangle$.

A step towards decidability...

$$A \Rightarrow B = !A \multimap B$$

A program of type $A \Rightarrow B$

duplicates or drops elements of A

and then

Just as intersection types.

$$A \Rightarrow B = !A \multimap B$$

Two interpretations of the exponential modality:

Qualitative models (Scott semantics)

$$!A = \mathcal{P}_{fin}(A)$$

$$\llbracket o \Rightarrow o \rrbracket = \mathcal{P}_{fin}(Q) \times Q$$

$$\{q_0, q_0, q_1\} = \{q_0, q_1\}$$

Order closure

Quantitative models (Relational semantics)

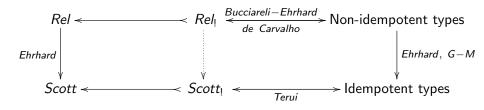
$$!A = \mathcal{M}_{fin}(A)$$

$$\llbracket o \Rightarrow o \rrbracket = \mathcal{M}_{fin}(Q) \times Q$$

$$[q_0, q_0, q_1] \neq [q_0, q_1]$$

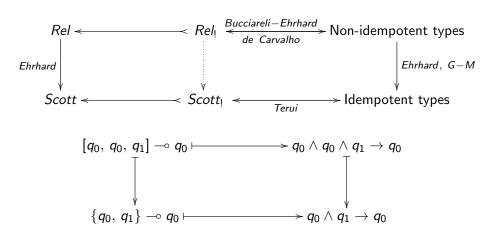
Unbounded multiplicities

Models of linear logic and intersection types (refining simple types):

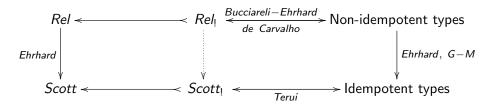


Fundamental idea: derivations of the intersection type systems compute denotations in the associated model.

Models of linear logic and intersection types (refining simple types):



Models of linear logic and intersection types (refining simple types):



Important remark: in order to connect idempotent types with a denotational model (\rightarrow invariance modulo $\beta\eta$), one needs subtyping.

Subtyping appears naturally in the Scott model, as the order closure condition.

In the relational semantics/non-idempotent types: no such requirement. But unbouded multiplicities. . .

Four theorems: inductive version

We obtain a theorem for every corner of our "equivalence square":

Theorem

In the relational semantics,

 $q_0 \in \llbracket \mathcal{G}
rbracket$ iff the ATA \mathcal{A}_ϕ has a finite run-tree over $\langle \mathcal{G} \rangle$.

Theorem

With non-idempotent intersection types,

 $\vdash \mathcal{G} : q_0$ iff the ATA \mathcal{A}_{ϕ} has a finite run-tree over $\langle \mathcal{G} \rangle$.

Four theorems: inductive version

We obtain a theorem for every corner of our "equivalence square":

Theorem

In the Scott semantics,

 $q_0 \in \llbracket \mathcal{G}
rbracket$ iff the ATA \mathcal{A}_ϕ has a finite run-tree over $\langle \mathcal{G} \rangle$.

Theorem

With idempotent intersection types (+ subtyping),

 $\vdash \mathcal{G} : q_0$ iff the ATA \mathcal{A}_{ϕ} has a finite run-tree over $\langle \mathcal{G} \rangle$.

An infinitary model of linear logic

Restrictions to finiteness:

- for Rel and non-idempotent types: lack of a countable multiplicity ω . Recall that tree constructors are free variables. . .
- for idempotent types: just need to allow infinite (or circular) derivations.
- for *Scott*: interpret *Y* as the gfp.

In *Rel*, we introduce a new exponential $A \mapsto \oint A$ s.t.

$$\llbracket \not \downarrow A \rrbracket = \mathcal{M}_{count}(\llbracket A \rrbracket)$$

(finite-or-countable multisets)

An infinitary model of linear logic

This defines an infinitary model of linear logic, which corresponds to non-idempotent intersection types with countable multiplicities and derivations of countable depth.

It admits a coinductive fixpoint, which we use to interpret Y.

The four theorems generalize to all ATA (\rightarrow infinite runs).

And the parity condition ?

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

"a given operation is executed infinitely often in some execution"

or

"after a read operation, a write eventually occurs".

Each state of an APT receives a color

$$\Omega(q) \in \mathit{Col} \subseteq \mathbb{N}$$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula φ :

 \mathcal{A}_{arphi} has a winning run-tree over $\langle \mathcal{G}
angle$ iff $\langle \mathcal{G}
angle \; arphi$

We reformulate Kobayashi and Ong's colored intersection type system in a very simple way:

$$\delta(q_0, if) = (2, q_0) \wedge (2, q_1)$$

now corresponds to

if :
$$\emptyset \Rightarrow \left(\square_{\Omega(q_0)} \, q_0 \wedge \square_{\Omega(q_1)} \, q_1\right) \Rightarrow q_0$$

Application computes the "local" maximum of colors, and the fixpoint deals with the acceptance condition.

In this reformulation, the colors behave as a family of modalities.

The coloring comonad

Since coloring is a modality, it defines a comonad in the semantics:

$$\Box A = Col \times A$$

which can be composed with \(\xu\), so that

$$\texttt{if} \; : \; \emptyset \Rightarrow \left(\Box_{\Omega(q_0)} \, q_0 \wedge \Box_{\Omega(q_1)} \, q_1 \right) \Rightarrow q_0$$

corresponds to

$$[\hspace{.1cm}] \multimap [(\Omega(q_0),\hspace{.05cm} q_0),(\Omega(q_1),\hspace{.05cm} q_1)] \multimap q_0 \hspace{.3cm} \in \hspace{.3cm} \llbracket \mathtt{if}
rbracket$$

in the semantics (relational in this example, but it also works for Scott)

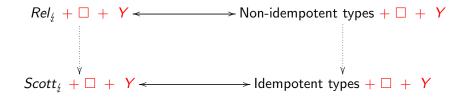
An inductive-coinductive fixpoint operator

We define a fixpoint operator:

- On typing derivations: rephrasal of the parity condition over derivations — winning derivations.
- On denotations: it composes inductively or coinductively elements of the semantics, according to the current color.

Work in progress: semantic definition of Y using directly the lfp and gfp.

The final picture



Open question: are the dotted lines an extensional collapse again?

Four theorems: full version

We obtain a theorem for every corner of our "colored equivalence square":

Theorem

In the colored relational semantics,

$$q_0 \in \llbracket \mathcal{G} \rrbracket$$
 iff the APT \mathcal{A}_{ϕ} has a winning run-tree over $\langle \mathcal{G} \rangle$.

Theorem

With colored non-idempotent intersection types, there is a winning derivation of

 $\vdash \mathcal{G} : q_0$ iff the APT \mathcal{A}_{ϕ} has a winning run-tree over $\langle \mathcal{G} \rangle$.

Four theorems: full version

We obtain a theorem for every corner of our "colored equivalence square":

Theorem

In the colored Scott semantics,

 $q_0 \in \llbracket \mathcal{G} \rrbracket$ iff the APT \mathcal{A}_{ϕ} has a winning run-tree over $\langle \mathcal{G} \rangle$.

Theorem

With colored idempotent intersection types, there is a winning derivation of

 $\vdash \mathcal{G} : q_0$ iff the APT \mathcal{A}_{ϕ} has a winning run-tree over $\langle \mathcal{G} \rangle$.

The selection problem

In the Scott/idempotent case, finiteness \Rightarrow decidability of the higher-order model-checking problem.

Even better: the selection problem is decidable.

If \mathcal{A}_{ϕ} accepts $\langle \mathcal{G} \rangle$, we can compute effectively a new scheme \mathcal{G}' such that $\langle \mathcal{G}' \rangle$ is a winning run-tree of \mathcal{A}_{ϕ} over $\langle \mathcal{G} \rangle$.

In other words: there is a higher-order winning run-tree.

(the key: annotate the rules with their denotation/their types).

Thank you for your attention!

The selection problem

In the Scott/idempotent case, finiteness \Rightarrow decidability of the higher-order model-checking problem.

Even better: the selection problem is decidable.

If \mathcal{A}_{ϕ} accepts $\langle \mathcal{G} \rangle$, we can compute effectively a new scheme \mathcal{G}' such that $\langle \mathcal{G}' \rangle$ is a winning run-tree of \mathcal{A}_{ϕ} over $\langle \mathcal{G} \rangle$.

In other words: there is a higher-order winning run-tree.

(the key: annotate the rules with their denotation/their types).

Thank you for your attention!