Higher-order model-checking, categorical semantics, and linear logic

Charles Grellois (joint work with Paul-André Melliès)

PPS \& LIAFA - Université Paris 7
TACL conference - June 21, 2015

Model-checking higher-order programs

- Construct a model \mathcal{M} of a program
- Specify a property φ in an appropriate logic
- Make them interact: the result is whether

$$
\mathcal{M} \vDash \varphi
$$

If \mathcal{M} is a word, a tree. . . of actions: translate φ to an equivalent automaton:

$$
\varphi \mapsto \mathcal{A}_{\varphi}
$$

Model-checking higher-order programs

For higher-order programs with recursion:

```
\(\mathcal{M}\) is a higher-order tree:
a tree produced by a higher-order recursion schemes (HORS)
```

over which we run

```
an alternating parity tree automaton (APT) \mathcal{A}
```

corresponding to a
modal μ-calculus formula φ.
(NB: here modal μ-calculus is equivalent to MSO)

Higher-order recursion schemes

$$
\mathcal{G}= \begin{cases}\mathrm{S} & =\mathrm{LNil} \\ \mathrm{~L} x & =\text { if } x(\mathrm{~L}(\operatorname{data} x))\end{cases}
$$

A HORS is a kind of deterministic higher-order grammar.
Rewrite rules have (higher-order) parameters.
"Everything" is simply-typed.
Rewriting produces a tree $\langle\mathcal{G}\rangle$.

Higher-order recursion schemes

$$
\mathcal{G}= \begin{cases}\mathrm{S} & =\mathrm{LNil} \\ \mathrm{~L} x & =\text { if } x(\mathrm{~L}(\operatorname{data} x))\end{cases}
$$

Rewriting starts from the start symbol S :

Higher-order recursion schemes

$$
\mathcal{G}= \begin{cases}\mathrm{S} & =\mathrm{LNil} \\ \mathrm{~L} x & =\text { if } x(\mathrm{~L}(\text { data } x))\end{cases}
$$

Higher-order recursion schemes

Higher-order recursion schemes

$$
\mathcal{G}= \begin{cases}\mathrm{S} & =\mathrm{LNil} \\ \mathrm{~L} x & =\text { if } x(\mathrm{~L}(\operatorname{data} x))\end{cases}
$$

$\langle\mathcal{G}\rangle$ is an infinite non-regular tree.

It is our model \mathcal{M}.
How to model-check a non-regular tree?

Higher-order recursion schemes

$$
\mathcal{G}= \begin{cases}\mathrm{S} & =\mathrm{LNil} \\ \mathrm{~L} x & =\text { if } x(\mathrm{~L}(\operatorname{data} x))\end{cases}
$$

HORS can alternatively be seen as simply-typed λ-terms with
free variables of order at most 1 ($=$ tree constructors)
and
simply-typed recursion operators $Y_{\sigma}:(\sigma \Rightarrow \sigma) \Rightarrow \sigma$.

Here: $\mathcal{G} \longleftrightarrow \longrightarrow\left(Y_{o \rightarrow 0}(\lambda \mathrm{~L} . \lambda x\right.$.if $\left.x(\mathrm{~L}(\operatorname{data} x)))\right) \mathrm{Nil}$

So, we can interpret HORS in models of the λY-calculus.

Alternating parity tree automata

For a modal μ-calculus formula φ,

$$
\langle\mathcal{G}\rangle \vDash \varphi
$$

iff an equivalent $\mathrm{APT} \mathcal{A}_{\varphi}$ has a run over $\langle\mathcal{G}\rangle$.

APT $=$ alternating tree automata (ATA) + parity condition.

Our goal: interpret HORS in a model reflecting the behavior of \mathcal{A}_{ϕ}.

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta\left(q_{0}\right.$, if $)=\left(2, q_{0}\right) \wedge\left(2, q_{1}\right)$.

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta\left(q_{0}\right.$, if $)=\left(2, q_{0}\right) \wedge\left(2, q_{1}\right)$.

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta\left(q_{0}\right.$, if $)=\left(2, q_{0}\right) \wedge\left(2, q_{1}\right)$.
This infinite process produces a run-tree of \mathcal{A}_{φ} over $\langle\mathcal{G}\rangle$.

It is an infinite, unranked tree.

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

$$
\delta\left(q_{0}, \text { if }\right)=\left(2, q_{0}\right) \wedge\left(2, q_{1}\right)
$$

can be seen as the intersection typing

$$
\text { if }: \emptyset \Rightarrow\left(q_{0} \wedge q_{1}\right) \Rightarrow q_{0}
$$

refining the simple typing

$$
\text { if : } 0 \Rightarrow 0 \Rightarrow 0
$$

Alternating tree automata and intersection types

In a derivation typing if $T_{1} T_{2}$:
$\begin{aligned} & \delta \mathrm{mpp} \frac{\bar{\emptyset} \text { if }: \emptyset \Rightarrow\left(q_{0} \wedge q_{1}\right) \Rightarrow q_{0}}{\emptyset} \\ & \operatorname{App} \frac{\emptyset \vdash \text { if } T_{1}:\left(q_{0} \wedge q_{1}\right) \Rightarrow q_{0}}{\emptyset \vdash \text { if } T_{1} T_{2}: q_{0}} \frac{\vdots}{\Gamma_{1} \vdash T_{2}: q_{0}}\end{aligned}$

Intersection types naturally lift to higher-order - and thus to \mathcal{G}, which finitely represents $\langle\mathcal{G}\rangle$.

Theorem (Kobayashi)

$\emptyset \vdash \mathcal{G}: q_{0} \quad$ iff \quad the $A T A \mathcal{A}_{\varphi}$ has a run-tree over $\langle\mathcal{G}\rangle$.
A step towards decidability...

Intersection types and linear logic

$$
A \Rightarrow B=!A \multimap B
$$

A program of type $A \Rightarrow B$
duplicates or drops elements of A
and then
uses linearly (= once) each copy

Just as intersection types and APT.

Intersection types and linear logic

$$
A \Rightarrow B=!A \multimap B
$$

Two interpretations of the exponential modality:

Qualitative models
(Scott semantics)
$!A=\mathcal{P}_{\text {fin }}(A)$
$\llbracket o \Rightarrow o \rrbracket=\mathcal{P}_{\text {fin }}(Q) \times Q$
$\left\{q_{0}, q_{0}, q_{1}\right\}=\left\{q_{0}, q_{1}\right\}$
Order closure

Quantitative models (Relational semantics)
$!A=\mathcal{M}_{\text {fin }}(A)$
$\llbracket o \Rightarrow o \rrbracket=\mathcal{M}_{\text {fin }}(Q) \times Q$
$\left[q_{0}, q_{0}, q_{1}\right] \neq\left[q_{0}, q_{1}\right]$
Unbounded multiplicities

Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

Fundamental idea: derivations of the intersection type systems compute denotations in the associated model.

Four theorems: inductive version

We obtain a theorem for every corner of our "equivalence square":

Theorem
In the relational (resp. Scott) semantics,

$$
q_{0} \in \llbracket \mathcal{G} \rrbracket \quad \text { iff } \quad \text { the } A T A \mathcal{A}_{\phi} \text { has a finite run-tree over }\langle\mathcal{G}\rangle \text {. }
$$

Theorem
With non-idempotent (resp. idempotent with subtyping) intersection types,
$\vdash \mathcal{G}: q_{0} \quad$ iff \quad the $A T A \mathcal{A}_{\phi}$ has a finite run-tree over $\langle\mathcal{G}\rangle$.

An infinitary model of linear logic

Rel and non-idempotent types lack of a countable multiplicity ω. Recall that tree constructors are free variables...

In Rel, we introduce a new exponential $A \mapsto\{A$ s.t.

$$
\llbracket \dot{z} A \rrbracket=\mathcal{M}_{\text {count }}(\llbracket A \rrbracket)
$$

(finite-or-countable multisets), so that

$$
\llbracket A \Rightarrow B \rrbracket=z \llbracket A \rrbracket \multimap \llbracket B \rrbracket=\mathcal{M}_{\text {count }}(\llbracket A \rrbracket) \times \llbracket B \rrbracket
$$

An infinitary model of linear logic

This defines an infinitary model of linear logic, which corresponds to non-idempotent intersection types with countable multiplicities
and derivations of countable depth.

It admits a coinductive fixpoint, which we use to interpret Y.
The four theorems generalize to all ATA (\rightarrow infinite runs).

And the parity condition ?

Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as
"a given operation is executed infinitely often in some execution"
or
"after a read operation, a write eventually occurs".

Alternating parity tree automata

Each state of an APT receives a color

$$
\Omega(q) \in C o l \subseteq \mathbb{N}
$$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a modal μ-calculus formula φ :
\mathcal{A}_{φ} has a winning run-tree over $\langle\mathcal{G}\rangle$ iff $\langle\mathcal{G}\rangle \vDash \phi$

Alternating parity tree automata

Kobayashi and Ong's type system has a quite complex handling of colors.
We reformulate it in a very simple way:

$$
\delta\left(q_{0}, \text { if }\right)=\left(2, q_{0}\right) \wedge\left(2, q_{1}\right)
$$

now corresponds to

$$
\text { if }: \emptyset \Rightarrow\left(\square_{\Omega\left(q_{0}\right)} q_{0} \wedge \square_{\Omega\left(q_{1}\right)} q_{1}\right) \Rightarrow q_{0}
$$

Application computes the "local" maximum of colors, and the fixpoint deals with the acceptance condition.

In this reformulation, the colors behave as a family of modalities.

The coloring comonad

Since coloring is a modality, it defines a comonad in the semantics:

$$
\square A=\operatorname{Col} \times A
$$

which can be composed with $\{$ thanks to a distributive law.

Now:

$$
\llbracket A \Rightarrow B \rrbracket=z \square \llbracket A \rrbracket \multimap \llbracket B \rrbracket=\mathcal{M}_{\text {count }}(\mathrm{Col} \times \llbracket A \rrbracket) \times \llbracket B \rrbracket
$$

We obtain a model of the λ-calculus which reflects the coloring by \mathcal{A}_{ϕ}.

An inductive-coinductive fixpoint operator

We define a fixpoint operator:

- On typing derivations: rephrasal of the parity condition over derivations \longrightarrow winning derivations.
- On denotations: it composes inductively or coinductively elements of the semantics, according to the current color.

The key here: parity conditions can be lifted to higher-order.

The fixpoint can also be defined using μ and ν.

The final picture

Open question: are the dotted lines an extensional collapse again?

Four theorems: full version

We obtain a theorem for every corner of our "colored equivalence square":

Theorem (G-Melliès 2015)
In the colored relational (resp. colored Scott) semantics,

$$
q_{0} \in \llbracket \mathcal{G} \rrbracket \quad \text { iff } \quad \text { the } A P T \mathcal{A}_{\phi} \text { has a winning run-tree over }\langle\mathcal{G}\rangle \text {. }
$$

Theorem (G-Melliès 2015)
With colored non-idempotent (resp. colored idempotent with subtyping) intersection types, there is a winning derivation of

$$
\vdash \mathcal{G}: q_{0} \quad \text { iff } \quad \text { the } A P T \mathcal{A}_{\phi} \text { has a winning run-tree over }\langle\mathcal{G}\rangle \text {. }
$$

The selection problem

In the Scott/idempotent case, finiteness \Rightarrow decidability of the higher-order model-checking problem.

Even better: the selection problem is decidable.

The selection problem

$$
\begin{cases}\mathrm{S} & =\mathrm{L} \mathrm{Nil} \\ \mathrm{~L} & =\lambda x . \text { if } x(\mathrm{~L}(\operatorname{data} x))\end{cases}
$$

becomes e.g.

Conclusion

- Higher-order model-checking \rightarrow verification of non-regular trees.
- Semantic methods allow to study the term generating them.
- Models of linear logic can be extended to capture parity conditions.
- The semantic of a term reflects whether it satisfies a given property.
- Decidability \rightarrow existence of a finite model.

Conclusion

- Higher-order model-checking \rightarrow verification of non-regular trees.
- Semantic methods allow to study the term generating them.
- Models of linear logic can be extended to capture parity conditions.
- The semantic of a term reflects whether it satisfies a given property.
- Decidability \rightarrow existence of a finite model.

Thank you for your attention!

