Semantics of linear logic and higher-order model-checking

Charles Grellois Paul-André Melliès

IRIF — Université Paris 7 FOCUS Team – INRIA & University of Bologna

NII Shonan Meeting on HOMC March 14, 2016

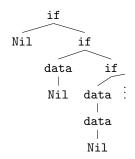
Model-checking higher-order programs

For higher-order programs with recursion, the model \mathcal{M} of interest is a higher-order regular tree.

Example:

Main	=	Listen Nil	
Listen <i>x</i>	=	if end then x else Listen (data x)	

modelled as



2 / 40

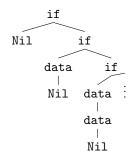
Model-checking higher-order programs

For higher-order programs with recursion, the model \mathcal{M} of interest is a higher-order regular tree.

Example:

Main	=	Listen Nil
Listen x	=	if end then x else Listen (data x)

modelled as



How to represent this tree finitely?

Model-checking higher-order programs

For higher-order programs with recursion, the model ${\cal M}$ of interest is a higher-order regular tree

over which we run

an alternating parity tree automaton (APT) \mathcal{A}_{φ}

corresponding to a

monadic second-order logic (MSO) formula φ .

(safety, liveness properties, etc)

Can we decide whether a higher-order regular tree satisfies a MSO formula?

Some regularity for infinite trees

- Main = Listen Nil
- Listen x = if end then x else Listen (data x)

is abstracted as

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = if x (L (data x)) \end{cases}$$

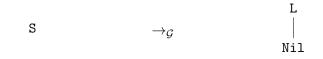
which produces (how ?) the higher-order tree of actions

4 / 40

1

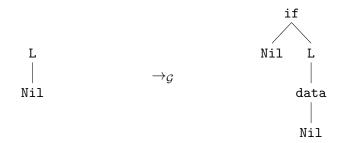
$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

Rewriting starts from the start symbol S:

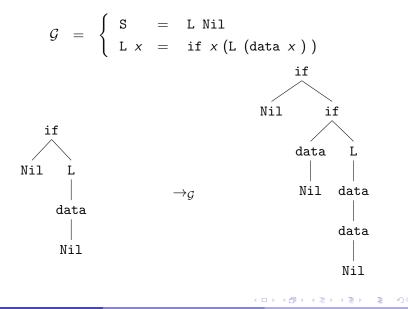


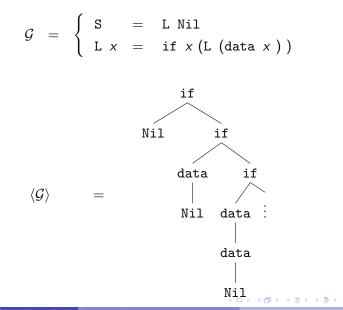
1

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$



5 / 40





1

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

"Everything" is simply-typed, and

well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing a distinguished symbol Ω in one step).

1

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

"Everything" is simply-typed, and

well-typed programs can't go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing a distinguished symbol Ω in one step).

HORS can alternatively be seen as simply-typed λ -terms with

simply-typed recursion operators Y_{σ} : $(\sigma \rightarrow \sigma) \rightarrow \sigma$.

For a MSO formula φ ,

$$\langle \mathcal{G} \rangle \models \varphi$$

iff an equivalent APT \mathcal{A}_{φ} has a run over $\langle \mathcal{G} \rangle$.

APT = alternating tree automata (ATA) + parity condition.

Alternating tree automata

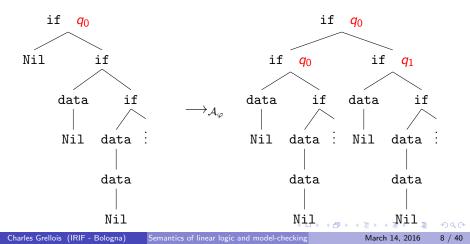
ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, if) = (2, q_0) \land (2, q_1).$

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, if) = (2, q_0) \wedge (2, q_1)$.



MSO discriminates inductive from coinductive behaviour.

This allows to express properties as

"a given operation is executed infinitely often in some execution"

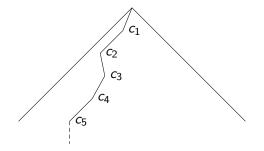
or

"after a read operation, a write eventually occurs".

Each state of an APT is attributed a color

 $\Omega(q) \in \mathit{Col} \subseteq \mathbb{N}$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.



10 / 40

Each state of an APT is attributed a color

 $\Omega(q) \in \mathit{Col} \subseteq \mathbb{N}$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula φ :

 \mathcal{A}_{φ} has a winning run-tree over $\langle \mathcal{G} \rangle$ iff $\langle \mathcal{G} \rangle \models \phi$.

Recognition by homomorphism

< 🗗 🕨

3

Automata and recognition

For the usual finite automata on words: given a regular language $L \subseteq A^*$,

there exists a finite automaton A recognizing L

if and only if

there exists a finite monoid M, a subset $K \subseteq M$ and a homomorphism $\phi : A^* \to M$ such that $L = \phi^{-1}(K)$.

Roughly speaking: there exists a finite algebraic structure in which the language is interpreted.

12 / 40

Automata and recognition

Let's extend this to:

- higher-order recursion schemes
- alternating parity automata

using domains (Aehlig 2006, Salvati 2009).

How to model...

- Alternation?
- Recursion?
- Parity condition?

13 / 40

Intersection types and alternation

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

$$\delta(q_0, \texttt{if}) \;=\; (2,q_0) \wedge (2,q_1)$$

can be seen as the intersection typing

$$\texttt{if} \ : \ \emptyset \to (q_0 \wedge q_1) \to q_0$$

refining the simple typing

if : $o \rightarrow o \rightarrow o$

(this talk is **NOT** about filter models!)

Alternating tree automata and intersection types

In a derivation typing if T_1 T_2 :

$$\begin{array}{c} \overset{\delta}{\operatorname{\mathsf{App}}} & \overline{ \frac{\emptyset \vdash \operatorname{if} : \emptyset \to (q_0 \land q_1) \to q_0}{\Phi} } \\ \overset{\delta}{\operatorname{\mathsf{App}}} & \overline{ \frac{\emptyset \vdash \operatorname{if} \ T_1 : (q_0 \land q_1) \to q_0}{\Gamma_{21}, \Gamma_{22}}} & \overline{ \frac{\Gamma_{21} \vdash T_2 : q_0}{\Gamma_{21}, \Gamma_2 : q_0}} \\ \end{array} \\ \end{array}$$

Intersection types naturally lift to higher-order – and thus to \mathcal{G} , which finitely represents $\langle \mathcal{G} \rangle$.

Theorem (Kobayashi) $S : q_0 \vdash S : q_0$ iffthe ATA \mathcal{A}_{φ} has a run-tree over $\langle \mathcal{G} \rangle$.

A type-system for verification: without parity conditions

Axiom
$$x: \bigwedge_{\{i\}} \theta_i :: \kappa \vdash x: \theta_i :: \kappa$$

$$\delta \qquad \frac{\{(i, q_{ij}) \mid 1 \le i \le n, 1 \le j \le k_i\} \text{ satisfies } \delta_A(q, a)}{\emptyset \vdash a : \bigwedge_{j=1}^{k_1} q_{1j} \to \ldots \to \bigwedge_{j=1}^{k_n} q_{nj} \to q :: o \to \cdots \to o}$$

App
$$\frac{\Delta \vdash t : (\theta_1 \land \dots \land \theta_k) \to \theta :: \kappa \to \kappa' \quad \Delta_i \vdash u : \theta_i :: \kappa}{\Delta, \Delta_1, \dots, \Delta_k \vdash t \, u : \theta :: \kappa'}$$

$$\lambda \qquad \frac{\Delta, x : \bigwedge_{i \in I} \theta_i :: \kappa \vdash t : \theta :: \kappa'}{\Delta \vdash \lambda x . t : (\bigwedge_{i \in I} \theta_i) \to \theta :: \kappa \to \kappa'}$$

$$fix \quad \frac{\Gamma \vdash \mathcal{R}(F) : \theta :: \kappa}{F : \theta :: \kappa \vdash F : \theta :: \kappa}$$

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking

A closer look at the Application rule

App
$$\frac{\Delta \vdash t : (\theta_1 \land \dots \land \theta_k) \to \theta :: \kappa \to \kappa' \quad \Delta_i \vdash u : \theta_i :: \kappa}{\Delta, \Delta_1, \dots, \Delta_k \vdash t u : \theta :: \kappa'}$$

Towards sequent calculus:

$$\frac{\Delta \vdash t : (\bigwedge_{i=1}^{n} \theta_{i}) \rightarrow \theta'}{\Delta_{1}, \dots, \Delta_{n} \vdash u : \bigwedge_{i=1}^{n} \theta_{i}} \quad \text{Right} \land$$

$$\frac{\Delta_{i} \vdash u : \theta_{i}}{\Delta_{1}, \dots, \Delta_{n} \vdash t u : \theta'}$$

A closer look at the Application rule

$$\frac{\Delta \vdash t : (\bigwedge_{i=1}^{n} \theta_{i}) \to \theta'}{\Delta_{1}, \dots, \Delta_{n} \vdash u : \bigwedge_{i=1}^{n} \theta_{i}} \quad \text{Right} \land$$

$$\frac{\Delta_{i} \vdash u : \theta_{i}}{\Delta_{1}, \dots, \Delta_{n} \vdash t u : \theta'}$$

Linear decomposition of the intuitionnistic arrow:

$$A \Rightarrow B = !A \multimap B$$

Two steps: duplication / erasure, then linear use.

Right \bigwedge corresponds to the Promotion rule of indexed linear logic.

19 / 40

Intersection types and semantics of linear logic

 $A \Rightarrow B = !A \multimap B$

Two interpretations of the exponential modality:

Qualitative models (Scott semantics)

 $!A = \mathcal{P}_{fin}(A)$

 $\llbracket o \Rightarrow o \rrbracket = \mathcal{P}_{fin}(Q) \times Q$

 $\{q_0, q_0, q_1\} = \{q_0, q_1\}$

Order closure

Quantitative models (Relational semantics)

$$|A = \mathcal{M}_{fin}(A)$$

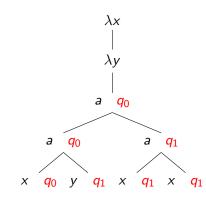
$$\llbracket o \Rightarrow o \rrbracket = \mathcal{M}_{fin}(Q) \times Q$$

 $[q_0, \, q_0, \, q_1] \ \neq \ [q_0, \, q_1]$

Unbounded multiplicities

・ロト ・得ト ・ヨト ・ヨト

An example of interpretation



In Rel, one denotation:

 $([q_0, q_1, q_1], [q_1], q_0)$

In *ScottL*, a set containing the principal type

 $(\{q_0, q_1\}, \{q_1\}, q_0)$

but also

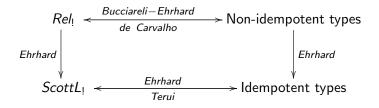
 $(\{q_0, q_1, q_2\}, \{q_1\}, q_0)$

and

and . . .

$$(\{q_0, q_1\}, \{q_0, q_1\}, q_0)$$

Intersection types and semantics of linear logic

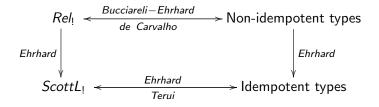


Fundamental idea:

 $\llbracket t \rrbracket \cong \{ \theta \mid \emptyset \vdash t : \theta \}$

for a closed term.

Intersection types and semantics of linear logic



Let t be a term normalizing to a tree $\langle t \rangle$ and \mathcal{A} be an alternating automaton.

 $\mathcal{A} \text{ accepts } \langle t \rangle \text{ from } q \ \Leftrightarrow \ q \in \llbracket t \rrbracket \ \Leftrightarrow \ \emptyset \ \vdash \ t \ : \ q \ :: \ o$

Extension with recursion and parity condition?

Adding parity conditions to the type system

We add coloring annotations to intersection types:

$$\delta(q_0, \texttt{if}) \;=\; (2, q_0) \wedge (2, q_1)$$

now corresponds to

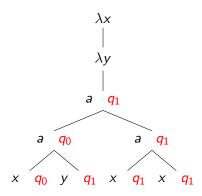
$$\texttt{if} \ : \ \emptyset \to \left(\Box_{\Omega(q_0)} \, q_0 \wedge \Box_{\Omega(q_1)} \, q_1 \right) \to q_0$$

Idea: if is a run-tree with two holes:

24 / 40

A new neutral color: ϵ for an empty run-tree context $[]_q$.

An example of colored intersection type Set $\Omega(q_i) = i$.



has type

$$\Box_0 \, q_0 \wedge \Box_1 \, q_1 o \Box_1 \, q_1 o q_1$$

Note the color 0 on q_0 ...

A type-system for verification (Grellois-Melliès 2014)

Axiom

$$\frac{x : \bigwedge_{\{i\}} \square_{\epsilon} \theta_{i} :: \kappa \vdash x : \theta_{i} :: \kappa}{x \vdash x : \theta_{i} :: \kappa}}$$

$$\frac{\{(i, q_{ij}) \mid 1 \leq i \leq n, 1 \leq j \leq k_{i}\} \text{ satisfies } \delta_{A}(q, a)}{\emptyset \vdash a : \bigwedge_{j=1}^{k_{1}} \square_{\Omega(q_{1j})} q_{1j} \rightarrow \ldots \rightarrow \bigwedge_{j=1}^{k_{n}} \square_{\Omega(q_{nj})} q_{nj} \rightarrow q :: o \rightarrow \cdots \rightarrow o \rightarrow o}$$
App

$$\frac{\Delta \vdash t : (\square_{m_{1}} \theta_{1} \land \cdots \land \square_{m_{k}} \theta_{k}) \rightarrow \theta :: \kappa \rightarrow \kappa' \quad \Delta_{i} \vdash u : \theta_{i} :: \kappa}{\Delta + \square_{m_{1}} \Delta_{1} + \ldots + \square_{m_{k}} \Delta_{k} \vdash t u : \theta :: \kappa'}$$

$$\frac{fix}{F : \square_{\epsilon} \theta :: \kappa \vdash F : \theta :: \kappa}{\Delta \vdash \lambda x \cdot t : (\bigwedge_{i \in I} \square_{m_{i}} \theta_{i}) \rightarrow \theta :: \kappa \rightarrow \kappa'}$$

δ

A type-system for verification

A colored Application rule:

App
$$\frac{\Delta \vdash t : (\Box_{c_1} \ \theta_1 \ \land \dots \land \Box_{c_k} \ \theta_k) \to \theta :: \kappa \to \kappa' \quad \Delta_i \vdash u : \theta_i :: \kappa}{\Delta + \Box_{c_1} \Delta_1 + \dots + \Box_{c_k} \Delta_k \ \vdash \ t \ u : \theta :: \kappa'}$$

inducing a winning condition on infinite proofs: the node

$$\Delta_i \vdash u : \theta_i :: \kappa$$

has color c_i , others have color ϵ , and we use the parity condition.

A type-system for verification

We now capture all MSO:

Theorem (G.-Melliès 2014, from Kobayashi-Ong 2009)

 $S : q_0 \vdash S : q_0$ admits a winning typing derivation iff the alternating parity automaton A has a winning run-tree over $\langle \mathcal{G} \rangle$.

We obtain decidability by considering idempotent types.

Non-idempotency is very helpful for proofs, but leads to infinitary constructions.

Colored models of linear logic

___ ▶

3

A closer look at the Application rule

$$\frac{\Delta \vdash t : (\Box_{m_1} \ \theta_1 \ \land \dots \land \Box_{m_k} \ \theta_k) \to \theta :: \kappa \to \kappa' \quad \Delta_i \vdash u : \theta_i :: \kappa}{\Delta + \Box_{m_1} \Delta_1 + \dots + \Box_{m_k} \Delta_k \ \vdash \ t \ u : \theta :: \kappa'}$$

Towards sequent calculus:

$$\frac{ \begin{array}{c} \Delta_{1} \vdash u : \theta_{1} \\ \hline \Box_{m_{1}} \Delta_{1} \vdash u : \Box_{m_{1}} \theta_{1} \\ \hline \Box_{m_{n}} \Delta_{1} \vdash u : \Box_{m_{n}} \theta_{1} \\ \hline \Box_{m_{n}} \Delta_{n} \vdash u : \Box_{m_{n}} \theta_{1} \\ \hline \Box_{m_{n}} \Delta_{n} \downarrow u : \Box_{m_{n}} \theta_{1} \\ \hline \Delta_{n} \Box_{m_{1}} \Delta_{1}, \dots, \Box_{m_{n}} \Delta_{n} \vdash u : A_{i=1}^{n} \Box_{m_{i}} \theta_{i} \\ \hline \Delta_{n} \Box_{m_{1}} \Delta_{1}, \dots, \Box_{m_{n}} \Delta_{n} \vdash t u : \theta \end{array}} \begin{array}{c} \mathsf{Right} \Box_{n} \\ \mathsf{Right} \Lambda_{n} \\ \mathsf{Right} \\ \mathsf{Right$$

Right \Box looks like a promotion. In linear logic:

$A \Rightarrow B = ! \Box A \multimap B$

Our reformulation of the Kobayashi-Ong type system shows that \Box is a modality (in the sense of S4) which distributes with the exponential in the semantics.

March 14, 2016

30 / 40

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking

Colored semantics

We extend:

- *Rel* with countable multiplicites, coloring and an inductive-coinductive fixpoint
- *ScottL* with coloring and an inductive-coinductive fixpoint.

Methodology: think in the relational semantics, and adapt to the Scott semantics using Ehrhard's 2012 result:

the finitary model ScottL is the extensional collapse of Rel.

Infinitary relational semantics

Extension of *Rel* with infinite multiplicities:

and coloring modality

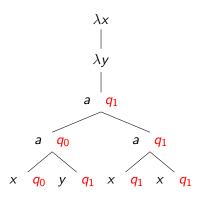
 $\Box A = Col \times A$

Distributive law:

Allows to compose comonads: $\mathbf{f} = \mathbf{f} \square$ is an exponential in the infinitary relational semantics.

This induces a colored CCC $\operatorname{Rel}_{\sharp}$ (\rightarrow model of the λ -calculus).

An example of interpretation Set $\Omega(q_i) = i$.



has denotation

 $([(0, q_0), (1, q_1), (1, q_1)], [(1, q_1)], q_1)$ (corresponding to the type $\Box_0 q_0 \land \Box_1 q_1 \rightarrow \Box_1 q_1 \rightarrow q_1$)

Charles Grellois (IRIF - Bologna)

Semantics of linear logic and model-checking

An inductive-coinductive fixpoint operator

 \boldsymbol{Y} transports

via

 $\mathbf{Y}_{X,A}(f) = \{ (w, a) | \exists witness \in \mathbf{run-tree}(f, a) \text{ with } w = \mathbf{leaves}(witness) \\ \text{and } witness \text{ is accepting} \}$

Charles Grellois (IRIF - Bologna) Se

An inductive-coinductive fixpoint operator

 $\mathbf{Y}_{X,A}(f) = \{ (w, a) | \exists witness \in \mathbf{run-tree}(f, a) \text{ with } w = \mathbf{leaves}(witness) \\ \text{and } witness \text{ is accepting} \}$

witness is built from finite pieces

$$(c, a')$$

 (c'_1, x_1) (c'_2, x_2) \cdots (c_1, a_1) (c_2, a_2) \cdots

where

$$\left(\left([(c_1', x_1), (c_2', x_2), \ldots], [(c_1, a_1), (c_2, a_2), \ldots]\right), a'\right) \in f$$

leaves(*witness*) is the colored multiset of the parameter leaves of *witness*.

Y is a Conway operator, and Rel_{4} is a model of the λY -calculus.

Model-checking and infinitary semantics

Conjecture An APT \mathcal{A} has a winning run from q_0 over $\langle \mathcal{G} \rangle$ if and only if $q_0 \in \llbracket \lambda(\mathcal{G}) \rrbracket$

where $\lambda(\mathcal{G})$ is a λY -term corresponding to \mathcal{G} .

Using Church encoding, we can also design an interpretation independent of the automaton of interest.

Finitary semantics

In ScottL, we define \Box , λ and **Y** similarly (using downward-closures).

 $ScottL_{f}$ is a model of the λY -calculus.

Theorem

An APT ${\mathcal A}$ has a winning run from q_0 over $\langle {\mathcal G} \rangle$ if and only if

 $q_0 \in \llbracket \lambda(\mathcal{G}) \rrbracket$

Corollary

The higher-order model-checking problem is decidable.

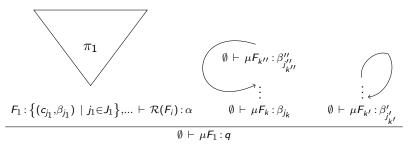
The proof proceeds by relating

- $ScottL_{i}$ to an intersection type system $S_{fix}(A)$ extending Terui's with recursion and parity conditions,
- $S_{fix}(A)$ and the colored intersection type system presented earlier, on η -long β -normal forms
- and by using our modified version of the soundness-and-completeness theorem of Kobayashi and Ong.

Decidability

Checking whether $q_0 \in \llbracket \mathcal{G} \rrbracket \iff$ solving a parity game on a finite fragment of $ScottL_{i}$, which is decidable.

We also obtain memoryless strategies which correspond to regular typings in $S_{fix}(A)$:



A key to the selection property.

Conclusion

- Connections between intersection types and linear logic
- Refinement of the Kobayashi-Ong type system: coloring is a modality
- Colored models of the λY -calculus coming from linear logic
- Decidability using the finitary Scott semantics
- Raises interesting questions in semantics: infinitary models, coeffects...
- Towards the model-checking of other classes of properties?

Thank you for your attention!

Conclusion

- Connections between intersection types and linear logic
- Refinement of the Kobayashi-Ong type system: coloring is a modality
- Colored models of the λY -calculus coming from linear logic
- Decidability using the finitary Scott semantics
- Raises interesting questions in semantics: infinitary models, coeffects...
- Towards the model-checking of other classes of properties?

Thank you for your attention!