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Commutation of words

Consider the word equation

x · w = w · x

Solution: a word x which is a prefix and a suffix of w .

Well-known fact: if
w = un

(u being minimal), the solutions are

{ um | m ∈ N }
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Commutation of words

Example:

x · abab = abab · x

Solutions: { (ab)m | m ∈ N }.

Generalization to polynomials or formal series (variables do not commute).

What about commutation of languages ?
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Centralizers

Consider the language commutation equation

X · L = L · X (1)

X solution iff for all (w , x) ∈ L× X ,

w · x ∈ L · X

can be factored as

x ′ · w ′ ∈ X · L

with x ′ ∈ X and w ′ ∈ L.

(and conversely)
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Centralizers: an example

Consider (from Choffrut-Karhumäki-Ollinger):

L = { a, a3, b, ba, ab, aba }

then a solution of the commutation equation is

X = L ∪ { a2 }

A few verifications:

a2 · b = a · ab

a2 · aba = a3 · ba

aba · a2 = ab · a3
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Centralizers

X · L = L · X

always has solutions, among which obviously:

∅ and {ε} and L and L∗ and L+

The union of two solutions is a solution: if

X1 · L = L · X1 and X2 · L = L · X2

then

(X1 ∪ X2) · L = L · (X1 ∪ X2)

Same for intersection.
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Centralizers

X · L = L · X

has a greatest solution: the union of all solutions (we will see why later).

It is the centralizer of L, denoted C(L).

It contains ε. Denote C+(L) the largest solution not containing ε.
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Centralizers

Approximation results:

L∗ ⊆ C(L) ⊆ Pref (L∗) ∩ Suff (L∗)

L+ ⊆ C+(L) ⊆ Pref+(L+) ∩ Suff+(L+)
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Centralizers, game-theoretically

Centralizers have a natural interactive interpretation: consider a
two-player game, starting on a word

u ∈ A∗

Adam adds a word w ∈ L to a side of u, and reaches Eve’s position:

u · w ∈ A∗ · L

Eve answers by removing a word v ∈ L on the other side, reaching:

v−1 u w ∈ L−1 · A∗ · L ⊆ A∗

Adam plays again, and so on:

u
Adam−−−→ u · w Eve−−→ v−1uw

Adam−−−→ sv−1uw
Eve−−→ · · ·
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Centralizers, game-theoretically

If Eve can not answer at some point, she looses.
If she can play forever, Adam looses.

Eve’s winning plays explore the commutation orbit of the initial word:

u ∈ C(L) iff Eve can win every play starting from it
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A key proposition on centralizers

The game-theoretic interpretation, rephrased:

Proposition

Given u, v ∈ L, suppose that

u · x = y · v (2)

Then

x ∈ C(L) ⇐⇒ y ∈ C(L)

Note that (2) means that x and y can commute with one word of L,
and that this assumption is one-sided.
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Commutation game: examples

L = a+b

Does b ∈ C(L)?

b
A,g−−→ a2b2 E ,d−−→ ∅

No.

(Adam could play any word of L on the left side).
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Commutation game: examples

L = a+b + b(a2)+

Does bab ∈ C(L)?

bab
A,g−−→ ab2ab
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Commutation game: examples

L = a+b + b(a2)+

Does bab ∈ C(L)?

bab
A,g−−→ ab2ab

E ,d−−→ ab2 A,g−−→ abab2 E ,d−−→ ∅

No – but Adam could have been smarter.
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Commutation game: examples

L = a+b + b(a2)+

Does bab ∈ C(L)?

bab
A,d−−→ babw

(for any w ∈ L)
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Commutation game: examples

L = a+b + b(a2)+

Does bab ∈ C(L)?

bab
A,d−−→ babw

E ,g−−→ ∅

Can Adam always win in a move?
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Commutation game: examples
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Commutation game: examples

L = a+b + b(a2)+

Does ba2b ∈ C(L)?

ba2b
A,g−−→ a2b2a2b

E ,d−−→ a2b2 A,g−−→ aba2b2 E ,d−−→ ∅

Not always: ba2b has both a suffix and a prefix in L, so that Eve can
always play a move.
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Centralizers

Conway’s problem: if L is regular, what can be said of C(L) ?

Open problem for a long time; it seems that people expected some
regularity. Until:

Theorem (Kunc 2006)

There exists a regular, star-free language L such that C(L), C+(L) and
C(L) \ C+(L) are not recursively enumerable.

There exists a finite language L such that C(L) and C+(L) are not
recursively enumerable.

In the second statement, nothing is said about C(L) \ C+(L).
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Centralizers

Theorem (Kunc 2006)

There exists a regular, star-free language L such that C(L), C+(L) and
C(L) \ C+(L) are not recursively enumerable.

There exists a finite language L such that C(L) and C+(L) are not
recursively enumerable.

In this talk:

we describe the main elements of Kunc’s proof,

we rephrase it in an alternate model of computation,

and we reveal an important key for understanding this theorem:
centralizers are coinductive.
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Elements of Kunc’s proof

First step: encode the behaviour of a Turing-complete machine in C(L).

We can only build L...

Two dual purposes:

add words to simulate the machine’s transitions,

add words to restrict the centralizer (it should only “simulate” the
transitions of the machine)
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Encoding Minsky machines

Kunc encodes Minsky machines:

two counters storing integers,

a finite set of states,

increasal/decreasal of counters,

conditional operation (does a counter store 0?)

They are Turing-complete.
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Encoding Minsky machines

Typical configuration:

(q, i , j) ∈ Q × N× N

Transitions update the counters.

If q is a state increasing the first counter and going to q′:

(q, i , j) −→ (q′, i + 1, j)
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Encoding Minsky machines

Kunc designs L such that C(L) contains every word

an+1 b âm+1 d̂2
q

encoding a configuration

(q, n, m)

How do the encodings of configurations relate ?
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Encoding Minsky machines

To simulate in C(L) the increasing transition

(q, i , j) −→ (q′, i + 1, j)

Kunc uses the “game-theoretic intepretation” to obtain:

an+1 b âm+1 d̂2
q ∈ C(L)

⇐⇒ an+2 b âm+1 d̂2
q′ ∈ C(L)
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Encoding Minsky machines

Indeed, start from

an+1 b âm+1 d̂2
q ∈ A∗

Then

gq · a · an+1 b âm+1 d̂2
q ∈ L · A∗

And

gq · an+2 b âm+1 d̂q · d̂q ∈ A∗ · L

So that, by the Proposition,

an+1 b âm+1 d̂2
q ∈ C(L) ⇐⇒ gqan+2 b âm+1 d̂q ∈ C(L)
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Encoding Minsky machines

Then, from

gq · an+2 b âm+1 d̂q ∈ A∗

we obtain

eq · fq · gq · an+2 b âm+1 d̂q ∈ L · A∗

and

eq · fq · gq · an+2 b âm+1 d̂q ∈ A∗ · L

So that

an+1 b âm+1 d̂2
q ∈ C(L) ⇐⇒ eqfqgqan+2 b âm+1 ∈ C(L)
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Encoding Minsky machines

Then, from

eqfqgqan+2 b âm+1 ∈ A∗

we obtain

eqfqgqan+2 b âm+1d̂q′ ∈ A∗ · L

and

eqfqgqan+2 b âm+1d̂q′ ∈ L · A∗

So that

an+1 b âm+1 d̂2
q ∈ C(L) ⇐⇒ fqgqan+2 b âm+1d̂q′ ∈ C(L)
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Encoding Minsky machines
Finally, from

fqgqan+2 b âm+1d̂q′ ∈ A∗

we obtain

fqgqan+2 b âm+1d̂q′ · d̂q′ ∈ A∗ · L

and

fqgq · an+2 b âm+1d̂q′ · d̂q′ ∈ L · A∗

So that we related two configurations of the machine:

an+1 b âm+1 d̂2
q ∈ C(L) ⇐⇒ an+2 b âm+1d̂2

q′ ∈ C(L)

L is defined such that only valid transitions can be simulated in C(L).
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q′ ∈ C(L)

L is defined such that only valid transitions can be simulated in C(L).

Charles Grellois (LIAFA & PPS - Paris 7) On the coinductive nature of centralizers July 1, 2015 24 / 1



Encoding Minsky machines
Finally, from

fqgqan+2 b âm+1d̂q′ ∈ A∗
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Encoding Minsky machines: a summary

an+1 b âm+1 d̂2
q ∈ C(L)

⇐⇒ gq an+2 b âm+1 d̂q ∈ C(L)
⇐⇒ eq fq gq an+2 b âm+1 ∈ C(L)

⇐⇒ fq gq an+2 b âm+1 d̂q′ ∈ C(L)

⇐⇒ an+2 b âm+1 d̂2
q′ ∈ C(L)

eq, fqgq, . . . ∈ L allow to manipulate data: add or remove letters, and
carry state information.

d̂q does not affect data, but updates the state information.
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q′ ∈ C(L)

eq, fqgq, . . . ∈ L allow to manipulate data: add or remove letters, and
carry state information.

d̂q does not affect data, but updates the state information.

Charles Grellois (LIAFA & PPS - Paris 7) On the coinductive nature of centralizers July 1, 2015 25 / 1



Encoding Minsky machines: a summary

an+1 b âm+1 d̂2
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Encoding Minsky machines: a summary

Similar encoding of decreasal/counter testing, for both counters.

Second counter: symmetry and use of:

an+1 b âm+1 d̂2
q ∈ C(L) ⇐⇒ d2

q an+1 b âm+1 ∈ C(L)

Minsky machines have too many operations. Let’s use a simpler model!
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Clockwise Turing machines

Clockwise Turing machines (Neary -Woods) have only one kind of
transition.

one circular tape,

a clockwise-moving head,

can output two symbols at once to extend the tape.
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Clockwise Turing machines vs. Turing machines

Both machines in state q.
The Turing machine reads a, writes d and moves head to the right. . .
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Clockwise Turing machines vs. Turing machines

where both machines have state q′.
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Clockwise Turing machines

Clockwise Turing machines simulate Turing machines.

No need to store the size of the tape to simulate a counter-clockwise
transition. Just need about |Q| × |Σ| more states.

(crucial! encoding an unbounded register ⇒ infinite alphabet)
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Clockwise Turing machines

dc

b a

?−→

dc

b e

Head on a.
We want to write e and move counter-clockwise.
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Clockwise Turing machines

dc

b a

−→

dc

b σ

a is replaced with a special symbol σ.
The state “remembers” that e needs to be translated.
The head moves clockwise.

Charles Grellois (LIAFA & PPS - Paris 7) On the coinductive nature of centralizers July 1, 2015 32 / 1



Clockwise Turing machines

dc

b σ

−→

dc

e σ

b is replaced with e.
The state “remembers” that b needs to be translated.
The head moves clockwise.
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Clockwise Turing machines

dc

e σ

−→

db

e σ

c is replaced with b.
The state “remembers” that c needs to be translated.
The head moves clockwise.
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Clockwise Turing machines

db

e σ

−→

cb

e σ

d is replaced with c.
The state “remembers” that d needs to be translated.
The head moves clockwise.
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Clockwise Turing machines

cb

e σ

−→

cb

e d

σ is replaced with d .
The state changes to q′.
The head moves clockwise.

Simulation is performed, up to a harmless rotation.
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Clockwise Turing machines: encoding configurations

dc

b a

in state q is encoded as the word

a b c d d̂2
q
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Clockwise Turing machines: encoding configurations

dc

b a

−→

dc

b e

from state q to state q′ will be encoded as

a b c d d̂2
q ∈ C(L) ⇐⇒ b c d e d̂2

q′ ∈ C(L)
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Clockwise Turing machines

We can use Kunc’s ideas to define L such that a transition

δ(q, u1) = (v , q′)

when the circular tape contains u1 · · · un corresponds to:

u1 u2 · · · und̂2
q ∈ C(L)

⇐⇒ fq,u1 gq,u1 u1 u2 · · · un d̂q ∈ C(L)
⇐⇒ eq,u1 fq,u1 gq,u1 u1 u2 · · · un ∈ C(L)
⇐⇒ gq,u1 u1 u2 · · · un v ĝq′,v ∈ C(L)

⇐⇒ u2 · · · un v ĝq′,v f̂q′,v êq′,v ∈ C(L)

⇐⇒ dq′ u2 · · · un v ĝq′,v f̂q′,v ∈ C(L)
⇐⇒ d2

q′ u2 · · · un v ∈ C(L)

⇐⇒ u2 · · · un v d̂2
q′ ∈ C(L)
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⇐⇒ d2

q′ u2 · · · un v ∈ C(L)

⇐⇒ u2 · · · un v d̂2
q′ ∈ C(L)

Charles Grellois (LIAFA & PPS - Paris 7) On the coinductive nature of centralizers July 1, 2015 39 / 1



Clockwise Turing machines

We can use Kunc’s ideas to define L such that a transition

δ(q, u1) = (v , q′)

when the circular tape contains u1 · · · un corresponds to:

u1 u2 · · · und̂2
q ∈ C(L)

⇐⇒ fq,u1 gq,u1 u1 u2 · · · un d̂q ∈ C(L)
⇐⇒ eq,u1 fq,u1 gq,u1 u1 u2 · · · un ∈ C(L)
⇐⇒ gq,u1 u1 u2 · · · un v ĝq′,v ∈ C(L)
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Elements of the centralizer

We can prove that the encoding of every configuration is in C(L).

As in Kunc’s proof: check by hand that the set of encodings commutes
with L.
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Recursive enumerability

With this encoding, we intuitively get that centralizers can encode
recursively enumerable languages, as they simulate the behaviour of Turing
machines.

But where does the non-r.e. comes from ?

Intuition is somehow misleading, because centralizers are coinductive.

As such, they compute the whole configuration graph of the machine.

Another key ingredient of Kunc’s proof is to remove encodings of the
initial configurations of C(L): what remains corresponds to the
complementary of the language of the encoded machine.
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Induction vs. coinduction

Inductive construction:

start from some initial element

iterate a construction over it.

Point of view of calculus: a machine starts on an initial configuration and
iterates its transition function over it.

Inductive interpretations only build finitary objects → terminating
computations.
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Induction vs. coinduction

Coinductive construction:

start from all elements

iterate a destruction over it (remove the elements contradicting some
construction/deduction rule).

For calculus, this corresponds to the configuration graph of a machine:

1 Start with the (countable) complete graph whose vertices are the
configurations:

V = A∗ × Q

2 Iteratively remove the edges which do not correspond to a transition
of the machine.
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Induction vs. coinduction: lattices and fixed points

Theorem (Tarski-Knaster)

Let L be a complete lattice and let

f : L −→ L

be an order-preserving function.
Then the set of fixed points of f in L is also a complete lattice.

In other terms: if you define a function f on an ordered structure with
supremum, infimum, least and greatest element, then it has fixed points.

Moreover, there is a least and a greatest fixed points of f .

And the greatest is the supremum of all fixed points.
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Induction vs. coinduction: lattices and fixed points

Inductive constructions correspond to least fixpoints

lfp(f ) =
∨
i

f i (⊥)

and coinductive ones to greatest fixpoints

gfp(f ) =
∧
i

f i (>)

(note that in some cases i may have to take ordinal values. . . but not in
this talk)
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Induction vs. coinduction: lattices and fixed points

lfp(f ) =
∨
i

f i (⊥)

precisely means that inductive constructions start over some element (in a
lattice P(S), it is the empty set), and construct iteratively a solution.

This is the spirit of the calculus of a machine.
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Induction vs. coinduction: lattices and fixed points

gfp(f ) =
∧
i

f i (>)

precisely means that coinductive constructions start from all elements (in a
lattice P(S), it is S), and “destruct it” iteratively until obtaining a
solution.

This is the spirit of the “computation” of the configuration graph of the
machine.
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Induction vs. coinduction: intuitions

Two different understandings of the word infinity:

Induction generates infinite structure, in the sense that they are
unbounded.

Coinduction generates infinite structures, in the sense that they can
contain infinite (countable or more, depending on the framework)
sequences.

Typically:

Induction generates trees with arbitrary long but finite branches,

Coinduction generates trees with countable (or even more) branches.

Charles Grellois (LIAFA & PPS - Paris 7) On the coinductive nature of centralizers July 1, 2015 48 / 1



Induction vs. coinduction: examples

Inductive Coinductive

Languages of words Languages of ω-words
Finite trees Infinite trees

Lists Streams
Computation Configuration graph
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Other applications of coinduction

Coinduction is used to:

Study the behavourial equivalence of (potentially infinite) processes:
bisimulation relation

Define infinite data types (infinite trees, streams. . . )

In µ-calculus, to specify properties about infinite behaviour of
programs (cf. also LTL and CTL)

More generally, it hides in every “relation refinement” algorithm, as in
the computation of the minimal automaton for example.

Charles Grellois (LIAFA & PPS - Paris 7) On the coinductive nature of centralizers July 1, 2015 50 / 1



Centralizers are coinductive

Over the lattice L = P(A∗), the function

φ : X 7→ (L−1 X ) · L ∩ L · (X L−1)

is order-preserving. As a consequence, it has fixed points, which form a
complete lattice.

Notice that X is a fixed point of φ if and only if

X = (L−1 X ) · L and X = L · (X L−1)

if and only if

X · L = L · X

The greatest fixpoint is C(L). It can be defined as the union (supremum)
of all solutions.
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Coinduction and game interpretation

Game-theoretically, we can understand coinductive constructions as games
where Eve can prove during “long-enough plays” (here, countably infinite
ones) that she has a justification for her moves iff she starts from an
element of the coinductive object.

Recall the situation for centralizers: starting from some word, Eve had a
winning strategy iff the word was in C(L).

These orbits correspond to the notion of self-justifying sets, which is
typical of coinduction.
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Coinduction and centralizers

We can design a language L such that

1 It contains the encoding of the configurations of a circular Turing
machine

2 The coinductive interpretation says that it even encodes the
configuration graph of the machine

3 Two encodings are in the same commutation orbit if and only if they
are in the same connected component of the configuration graph.

4 We can exclude some configurations of C(L)
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Coinduction and centralizers

Adapting Kunc’s proof, we modify L so that precisely every initial
configuration of the machine is removed from C(L).

It removes their commutation orbits: the computations of the machine.
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Coinduction and centralizers

At this stage, C(L) contains only

commutation orbits corresponding to infinite computations
(non-terminating ones), which do not compute elements of the
language of the machine,

and commutation orbits which may reach a final configuration but
not accessible from an initial configuration: that is, elements of the
complementary of the machine’s language.
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Coinduction and centralizers

In other terms:

C(L) contains the encoding of the complementary
of the language of a (circular) Turing machine.

Taking a universal machine gives Kunc’s theorem:

C(L) is not recursively enumerable
(but it is co-r.e.).
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Centralizers of finite languages

Recall the second part of the Theorem: L can be finite.

So far, the language we built is star-free – yet defined with stars.

It consists on a finite amount of interaction words: fu,q gu,q, d̂q, . . .
used for simulating transitions, and of an infinite amount of restriction
words, designed to restrict the centralizer to actual simulations of
transitions.

Informally, they ensure that if you remove more than you should, then you
have to remove so much that you will eventually ”loose the game”.

eq fq gq an+2 b âm+1

Kunc gives a manner to ”cut the stars” into finite words, while ”forcing
the players to respect them in their plays”.

Charles Grellois (LIAFA & PPS - Paris 7) On the coinductive nature of centralizers July 1, 2015 57 / 1



Centralizers of finite languages

Recall the second part of the Theorem: L can be finite.

So far, the language we built is star-free – yet defined with stars.

It consists on a finite amount of interaction words: fu,q gu,q, d̂q, . . .
used for simulating transitions, and of an infinite amount of restriction
words, designed to restrict the centralizer to actual simulations of
transitions.

Informally, they ensure that if you remove more than you should, then you
have to remove so much that you will eventually ”loose the game”.

eq fq gq an+2 b âm+1
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Centralizers of finite languages

This gives a finite language L, obtained from the star-free language one.
However, it requires a huge number of impossibility words.

The main reason for us to use a circular Turing machine – and not a
Minsky machine – was in fact to estimate the cardinality of this finite
language.

For the smallest universal Turing machine we know (4 states over a
4-symbol alphabet), it is about 1021 words; almost all of them are
restriction words.
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Conclusion

We sketched a variant of Kunc’s proof, which has three strengths:

Only one kind of transition has to be considered, unlike for Minsky
machines (or usual Turing ones)

The coinductive nature of centralizers helps the understanding of the
result and the presentation of the proof

Cardinality of L can be estimated more accurately in the finite case.

Thank you for your attention !
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