
Tree automata and logical models

Charles Grellois (joint work with Paul-André Melliès)

PPS & LIAFA — Université Paris 7

October 3rd, 2014

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 1 / 39

Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model of a program

Specify a property in an appropriate logic

Make them interact in order to determine whether the program
satisfies the property.

Interaction is often realized by translating the formula into an equivalent
automaton, which then runs over the model.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 2 / 39

A very naive model-checking problem

Consider the most naive possible model-checking problem where:

Actions of the program are modelled by a finite word

The property to check corresponds to a finite automaton

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 3 / 39

Automata and recognition

Recall that, given a language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism φ : A∗ → M such that L = φ−1(K).

Roughly speaking: there exists a finite algebraic structure in which the
language is interpreted

Note that the interpretation depends on the choice of A. However, the
problem can be reformulated in order to remove this dependency.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 4 / 39

Automata and recognition

Recall that, given a language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism φ : A∗ → M such that L = φ−1(K).

Roughly speaking: there exists a finite algebraic structure in which the
language is interpreted

Note that the interpretation depends on the choice of A. However, the
problem can be reformulated in order to remove this dependency.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 4 / 39

A very naive model-checking problem

Now the model-checking problem can be solved by:

computing the interpretation of a word

and check whether it belongs to M

A more elaborate problem: what about ultimately periodic words and
Büchi automata ?

We would need some model extending the monoid’s behaviour with some
notion of recursion (for periodicity) which would model the Büchi
condition.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 5 / 39

A very naive model-checking problem

Now the model-checking problem can be solved by:

computing the interpretation of a word

and check whether it belongs to M

A more elaborate problem: what about ultimately periodic words and
Büchi automata ?

We would need some model extending the monoid’s behaviour with some
notion of recursion (for periodicity) which would model the Büchi
condition.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 5 / 39

A very naive model-checking problem

Now the model-checking problem can be solved by:

computing the interpretation of a word

and check whether it belongs to M

A more elaborate problem: what about ultimately periodic words and
Büchi automata ?

We would need some model extending the monoid’s behaviour with some
notion of recursion (for periodicity) which would model the Büchi
condition.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 5 / 39

Model-checking higher-order programs

This work is concerned with the verification of higher-order functional
programs, as Java for instance.

They will be modelled by recursion schemes, generating trees describing all
the potential behaviours of a program.

Properties will be expressed in MSO or modal µ-calculus (equi-expressive
over trees).

Their automata counterpart is given by alternating parity automata (APT).

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 6 / 39

Model-checking higher-order programs

This work is concerned with the verification of higher-order functional
programs, as Java for instance.

They will be modelled by recursion schemes, generating trees describing all
the potential behaviours of a program.

Properties will be expressed in MSO or modal µ-calculus (equi-expressive
over trees).

Their automata counterpart is given by alternating parity automata (APT).

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 6 / 39

Model-checking higher-order programs

This model-checking problem is decidable:

Ong 2006 (game semantics)

Hague-Murawski-Ong-Serre 2008 (game semantics, higher-order
pushdown automata)

Kobayashi-Ong 2009 (intersection types)

current work of Salvati and Walukiewicz (interpretation in finite
models)

. . .

Our aim is to deepen the semantic understanding we have of this result,
using existing relations between alternating automata, intersection types,
(linear) logic and its models.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 7 / 39

Model-checking higher-order programs

Is it possible to extend to this situation the setting for finite automata ?

We would like to interpret the tree of behaviours in an algebraic structure,
so that

acceptance by the automata

would reduce to

checking whether some element belongs to the semantics

of the tree.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 8 / 39

Higher-order recursion schemes

Idea: it is a kind of grammar whose parameters may be functions and
which generates trees.

Alternatively, it is a formalism equivalent to λ calculus with recursion and
uninterpreted constants from a ranked alphabet Σ.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 9 / 39

A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

With a recursion scheme we can model this program and produce its tree
of behaviours.

Note that constants are not interpreted: in particular, a recursion scheme
does not evaluate a boolean conditional if ... then ... else ...

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 10 / 39

A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

With a recursion scheme we can model this program and produce its tree
of behaviours.

Note that constants are not interpreted: in particular, a recursion scheme
does not evaluate a boolean conditional if ... then ... else ...

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 10 / 39

A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

formulated as a recursion scheme:

S = L Nil

L x = if x (L (data x)

or, in λ-calculus style :

S = L Nil

L = λx . if x (L (data x)

(this latter representation is a regular grammar – equivalently, a λY -term)

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 11 / 39

A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

formulated as a recursion scheme:

S = L Nil

L x = if x (L (data x)

or, in λ-calculus style :

S = L Nil

L = λx . if x (L (data x)

(this latter representation is a regular grammar – equivalently, a λY -term)

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 11 / 39

A very simple functional program

Main = Listen Nil

Listen x = if end then x else Listen (data x)

formulated as a recursion scheme:

S = L Nil

L x = if x (L (data x)

or, in λ-calculus style :

S = L Nil

L = λx . if x (L (data x)

(this latter representation is a regular grammar – equivalently, a λY -term)

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 11 / 39

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

S

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 12 / 39

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

S =⇒
L

Nil

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 13 / 39

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

L

Nil

=⇒

if

L

data

Nil

Nil

Notice that substitution and expansion occur in one same step.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 14 / 39

Value tree of a recursion scheme
S = L Nil

L x = if x (L (data x)
generates:

if

L

data

Nil

Nil

=⇒

if

if

L

data

data

Nil

data

Nil

Nil

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 15 / 39

Value tree of a recursion scheme

if

if

if

...data

data

Nil

data

Nil

Nil

Very simple program, yet it produces a tree which is not regular. . .

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 16 / 39

Value tree of a recursion scheme

if

if

if

...data

data

Nil

data

Nil

Nil

Very simple program, yet it produces a tree which is not regular. . .

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 16 / 39

Representation of recursion schemes

The only finite representation of such a tree is actually the scheme itself.

This suggests that we should interpret the scheme (in fact, the associated
λ-term) in an algebraic structure suitable for higher-order interpretations:
some logical model.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 17 / 39

Alternating parity tree automata

Modal µ-calculus is an extension of boolean logic over a branching
structure, with fixpoints and quantifications over the successors of the
current position.

It allows to unravel some formula over the structure. This can be encoded
into an alternating parity tree automata (APT).

Its states are the subformulas of the encoded formula.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 18 / 39

Alternating parity tree automata

APT are non-deterministic tree automata whose transitions may duplicate
or drop a subtree.

Example: δ(q0, if) = (2, q0) ∧ (2, q1).

This is reminiscent of the exponential modality of linear logic

This motivates the use of suitable models of linear logic for interpreting
schemes.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 19 / 39

Alternating parity tree automata

APT are non-deterministic tree automata whose transitions may duplicate
or drop a subtree.

Example: δ(q0, if) = (2, q0) ∧ (2, q1).

This is reminiscent of the exponential modality of linear logic

This motivates the use of suitable models of linear logic for interpreting
schemes.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 19 / 39

Alternating parity tree automata

APT are non-deterministic tree automata whose transitions may duplicate
or drop a subtree.

Example: δ(q0, if) = (2, q0) ∧ (2, q1).

This is reminiscent of the exponential modality of linear logic

This motivates the use of suitable models of linear logic for interpreting
schemes.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 19 / 39

Alternating parity tree automata

δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 20 / 39

Alternating parity tree automata
δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

and so on. This gives the notion of run-tree.
Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 21 / 39

Alternating parity tree automata
δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

and so on. This gives the notion of run-tree.
Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 21 / 39

Model-checking higher-order programs

Kobayashi noticed in 2009 that a transition

δ(q, a) = (1, q0) ∧ (1, q1) ∧ (2, q2)

may be understood as a refinement of the simple typing

a : ⊥ → ⊥ → ⊥

with intersection types:

a : (q0 ∧ q1)→ q2 → q :: ⊥ → ⊥ → ⊥

This connection with intersection types is a step towards a model-theoretic
interpretation.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 22 / 39

Model-checking higher-order programs

Kobayashi noticed in 2009 that a transition

δ(q, a) = (1, q0) ∧ (1, q1) ∧ (2, q2)

may be understood as a refinement of the simple typing

a : ⊥ → ⊥ → ⊥

with intersection types:

a : (q0 ∧ q1)→ q2 → q :: ⊥ → ⊥ → ⊥

This connection with intersection types is a step towards a model-theoretic
interpretation.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 22 / 39

Linear decomposition of the intuitionnistic arrow

In linear logic, the intuitionnistic arrow A⇒ B factors as

!A(B

whose interpretation in this relational model is

Mfin([[A]])× [[B]]

In other words, it is some collection (with multiplicities) of elements of [[A]]
producing an element of [[B]].

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 23 / 39

Linear decomposition of the intuitionnistic arrow

In linear logic, the intuitionnistic arrow A⇒ B factors as

!A(B

whose interpretation in this relational model is

Mfin([[A]])× [[B]]

In other words, it is some collection (with multiplicities) of elements of [[A]]
producing an element of [[B]].

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 23 / 39

An example of interpretation

Consider the rule
F x y = a (a x y) (a x x)

which corresponds to

λx

λy

a

a

xx

a

yx

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 24 / 39

An example of interpretation

and suppose that A may run as follows on the tree:

λx

λy

a q0

a

xx

a

yx

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 25 / 39

An example of interpretation

and suppose that A may run as follows on the tree:

λx

λy

a q0

a q1

xx

a q0

yx

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 26 / 39

An example of interpretation

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

Then this rule will be interpreted in the model as

([q0, q1, q1], [q1], q0)

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 27 / 39

An example of interpretation

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

Then this rule will be interpreted in the model as

([q0, q1, q1], [q1], q0)

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 27 / 39

Relational interpretation and automata acceptance

Theorem (G.-Melliès 2014)

Consider an alternating tree automaton A and a scheme G producing a
tree T .

Then A has a run-tree over T if and only if

{q0} ∈ [[G]]

Note that the interpretation of G depends of the choice of A.
This dependence can be removed by reformulating the problem.

This is a compositional approach of model-checking.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 28 / 39

Relational interpretation and automata acceptance

Theorem (G.-Melliès 2014)

Consider an alternating tree automaton A and a scheme G producing a
tree T .

Then A has a run-tree over T if and only if

{q0} ∈ [[G]]

Note that the interpretation of G depends of the choice of A.
This dependence can be removed by reformulating the problem.

This is a compositional approach of model-checking.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 28 / 39

Relational interpretation and automata acceptance

Theorem (G.-Melliès 2014)

Consider an alternating tree automaton A and a scheme G producing a
tree T .

Then A has a run-tree over T if and only if

{q0} ∈ [[G]]

Note that the interpretation of G depends of the choice of A.
This dependence can be removed by reformulating the problem.

This is a compositional approach of model-checking.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 28 / 39

Elements of proof

The proof relies on the equivalence of

run-trees and intersection typings

by Kobayashi, and of

intersection typings and (some) relational interpretations

by Grellois and Melliès (which uses a logical correspondence of Bucciarelli
and Ehrhard).

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 29 / 39

Higher-order model checking

Two major issues of the model-checking problem were not adressed so far:

recursion

and parity conditions

Recursion can be added to the models and typings in the usual
(coinductive) way.

Parity is more challenging.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 30 / 39

Parity conditions

To capture all MSO, the alternating automaton needs to check whether it
iterated finitely the properties whose infinite recursion was forbidden.

This is done a posteriori, by discriminating run-trees.

States are now coloured by a function Ω : Q → N.

A branch of a run-tree is winning if it is finite or if, among the colours
it contains infinitely often, the greatest is even.

A run-tree is winning if and only if all its branches are.

An APT accepts a tree iff it has a winning run-tree over it.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 31 / 39

Parity conditions

To capture all MSO, the alternating automaton needs to check whether it
iterated finitely the properties whose infinite recursion was forbidden.

This is done a posteriori, by discriminating run-trees.

States are now coloured by a function Ω : Q → N.

A branch of a run-tree is winning if it is finite or if, among the colours
it contains infinitely often, the greatest is even.

A run-tree is winning if and only if all its branches are.

An APT accepts a tree iff it has a winning run-tree over it.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 31 / 39

Parity conditions

Kobayashi and Ong extended the typing with a colouring operation:

a : (∅ → �c2 q2 → q0) ∧ ((�c1 q1 ∧�c2 q2)→ �c0 q0 → q0)

This operation lifts to higher-order.

In this setting, t will have some type �c1 σ1 ∧�c2 σ2 → τ .

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 32 / 39

Parity conditions

We investigated the semantic nature of �, and proved that it has good
properties.

It can be added to the model, and there is a very natural coloured
interpretation of types:

[[A⇒ B]] =Mfin(Col × [[A]])× [[B]]

Again, there is a correspondence between interpretations in the model and
the typings.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 33 / 39

Parity conditions

We investigated the semantic nature of �, and proved that it has good
properties.

It can be added to the model, and there is a very natural coloured
interpretation of types:

[[A⇒ B]] =Mfin(Col × [[A]])× [[B]]

Again, there is a correspondence between interpretations in the model and
the typings.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 33 / 39

An example of coloured interpretation

Suppose Ω(q0) = 0 and Ω(q1) = 1.

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

This rule will be interpreted in the model as

([(0, q0), (1, q1), (1, q1)], [(1, q1)], q0)

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 34 / 39

An example of coloured interpretation

Suppose Ω(q0) = 0 and Ω(q1) = 1.

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

This rule will be interpreted in the model as

([(0, q0), (1, q1), (1, q1)], [(1, q1)], q0)

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 34 / 39

Parity conditions and typing derivations

There are two crucial points:

this can still be formulated equivalently in typing derivations

the colouring of branches is preserved by the rewriting dynamics of
the scheme

So we can decide directly from a typing of the scheme’s rules whether the
tree it produces will be accepted.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 35 / 39

Parity conditions and typing derivations

There are two crucial points:

this can still be formulated equivalently in typing derivations

the colouring of branches is preserved by the rewriting dynamics of
the scheme

So we can decide directly from a typing of the scheme’s rules whether the
tree it produces will be accepted.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 35 / 39

Parity conditions and typing derivations

The typing derivations are now of infinite depth.

We introduce the notion of winning derivation by setting the usual parity
condition over typing trees.

Theorem (G.-Melliès 2014)

Consider an alternating parity tree automaton A and a scheme G
producing a tree T .

Then A has a run-tree over T if and only if there exists a winning typing
tree of

Γ ` t(G) : q0 :: ⊥

where t(G) is the λ-term corresponding to G.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 36 / 39

Parity conditions and typing derivations

The typing derivations are now of infinite depth.

We introduce the notion of winning derivation by setting the usual parity
condition over typing trees.

Theorem (G.-Melliès 2014)

Consider an alternating parity tree automaton A and a scheme G
producing a tree T .

Then A has a run-tree over T if and only if there exists a winning typing
tree of

Γ ` t(G) : q0 :: ⊥

where t(G) is the λ-term corresponding to G.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 36 / 39

Connection with the coloured relational model

In order to obtain the corresponding model-theoretic version of this
theorem, we need to add an appropriate fixpoint to the model.

In some sense, this fixpoint operator composes elements of the
interpretation of a term in all possible ways which satisfy the parity
condition.

This leads to an extension of the theorem to the coloured model-theoretic
case.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 37 / 39

Connection with the coloured relational model

In order to obtain the corresponding model-theoretic version of this
theorem, we need to add an appropriate fixpoint to the model.

In some sense, this fixpoint operator composes elements of the
interpretation of a term in all possible ways which satisfy the parity
condition.

This leads to an extension of the theorem to the coloured model-theoretic
case.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 37 / 39

A last remark: extensional collapse and decidability

Ehrhard proved in 2012 a correspondence between the relational model we
studied, and another model where multisets are replaced with sets.

We can extend this correspondence to the relational model proposed in
this talk, so that all interpretations are taken in a finite model.

In other terms: the higher-order model-checking problem is decidable,
again.

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 38 / 39

Conclusions and perspectives

Terms can be interpreted in models reflecting the behaviour of APT.

Model-checking reduces to computing the interpretation of a scheme,
and checking whether it contains the initial state.

This approach is equivalent to a type-theoretic one.

Results of extensional collapse lead - again - to decidability.

There is still a lot to do: axiomatize this extension of ”recognition by
monoid”, develop a notion of game semantics with parity, extend the
approach to other models of tree automata. . .

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 39 / 39

Conclusions and perspectives

Terms can be interpreted in models reflecting the behaviour of APT.

Model-checking reduces to computing the interpretation of a scheme,
and checking whether it contains the initial state.

This approach is equivalent to a type-theoretic one.

Results of extensional collapse lead - again - to decidability.

There is still a lot to do: axiomatize this extension of ”recognition by
monoid”, develop a notion of game semantics with parity, extend the
approach to other models of tree automata. . .

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 39 / 39

Conclusions and perspectives

Terms can be interpreted in models reflecting the behaviour of APT.

Model-checking reduces to computing the interpretation of a scheme,
and checking whether it contains the initial state.

This approach is equivalent to a type-theoretic one.

Results of extensional collapse lead - again - to decidability.

There is still a lot to do: axiomatize this extension of ”recognition by
monoid”, develop a notion of game semantics with parity, extend the
approach to other models of tree automata. . .

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 39 / 39

Conclusions and perspectives

Terms can be interpreted in models reflecting the behaviour of APT.

Model-checking reduces to computing the interpretation of a scheme,
and checking whether it contains the initial state.

This approach is equivalent to a type-theoretic one.

Results of extensional collapse lead - again - to decidability.

There is still a lot to do: axiomatize this extension of ”recognition by
monoid”, develop a notion of game semantics with parity, extend the
approach to other models of tree automata. . .

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 39 / 39

Conclusions and perspectives

Terms can be interpreted in models reflecting the behaviour of APT.

Model-checking reduces to computing the interpretation of a scheme,
and checking whether it contains the initial state.

This approach is equivalent to a type-theoretic one.

Results of extensional collapse lead - again - to decidability.

There is still a lot to do: axiomatize this extension of ”recognition by
monoid”, develop a notion of game semantics with parity, extend the
approach to other models of tree automata. . .

Grellois and Melliès (PPS & LIAFA) Tree automata and logical models October 3rd, 2014 39 / 39

