
Finitary semantics of linear logic
and higher-order model-checking

Charles Grellois Paul-André Melliès

PPS & LIAFA — Université Paris 7

MFCS 40 — Aug 28, 2015

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 1 / 23



Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program

Specify a property ϕ in an appropriate logic

Make them interact: the result is whether

M ⊧ ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ ↦ Aϕ

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 2 / 23



Model-checking higher-order programs

Model-checking of MSO over graphs is well-known: we can
decide whether G ⊧ φ (amounts to solving a finite parity game).

G0 = if

Nil

T0 =

if

if

if

⋮Nil

Nil

Nil

Graph unfolding ⇐⇒ regular tree.

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 3 / 23



Model-checking higher-order programs

For functional programs (i.e. a function can have a function as input),
with recursion (Haskell, OCaml, Javascript, Python. . . ), M is a
higher-order tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

⋮data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 4 / 23



Model-checking higher-order programs

For functional programs (i.e. a function can have a function as input),
with recursion (Haskell, OCaml, Javascript, Python. . . ), M is a
higher-order tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

⋮data

data

Nil

data

Nil

Nil

How to represent this tree finitely?

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 4 / 23



Model-checking higher-order programs

For functional programs (i.e. a function can have a function as input),
with recursion (Haskell, OCaml, Javascript, Python. . . ), M is a
higher-order tree

over which we run

an alternating parity tree automaton (APT) Aϕ
corresponding to a

monadic second-order logic (MSO) formula ϕ.

(safety, liveness properties, etc)

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 4 / 23



Model-checking higher-order programs

For functional programs (i.e. a function can have a function as input),
with recursion (Haskell, OCaml, Javascript, Python. . . ), M is a
higher-order tree

over which we run

an alternating parity tree automaton (APT) Aϕ
corresponding to a

monadic second-order logic (MSO) formula ϕ.

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 4 / 23



Higher-order recursion schemes

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 5 / 23



Higher-order recursion schemes

Main = Listen Nil

Listen x = if end then x else Listen (data x)

is abstracted as

G =
⎧⎪⎪⎨⎪⎪⎩

S = L Nil

L x = if x (L (data x ) )
which produces (how ?) the higher-order tree of actions

if

if

⋮data

Nil

Nil

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 6 / 23



Higher-order recursion schemes

G =
⎧⎪⎪⎨⎪⎪⎩

S = L Nil

L x = if x (L (data x ) )

Sort of deterministic higher-order grammar providing a finite
representation of higher-order trees.

Rewrite rules have (higher-order) parameters.

“Everything” is simply-typed.

Rewriting produces a tree ⟨G⟩.

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 7 / 23



Higher-order recursion schemes

G =
⎧⎪⎪⎨⎪⎪⎩

S = L Nil

L x = if x (L (data x ) )

Rewriting starts from the start symbol S:

S →G
L

Nil

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 7 / 23



Higher-order recursion schemes

G =
⎧⎪⎪⎨⎪⎪⎩

S = L Nil

L x = if x (L (data x ) )

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 7 / 23



Higher-order recursion schemes

G =
⎧⎪⎪⎨⎪⎪⎩

S = L Nil

L x = if x (L (data x ) )

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 7 / 23



Higher-order recursion schemes

G =
⎧⎪⎪⎨⎪⎪⎩

S = L Nil

L x = if x (L (data x ) )

⟨G⟩ is an infinite
non-regular tree.

It is our model M.

if

if

if

⋮data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 7 / 23



Higher-order recursion schemes

G =
⎧⎪⎪⎨⎪⎪⎩

S = L Nil

L x = if x (L (data x ) )

HORS can alternatively be seen as simply-typed λ-terms with

free variables of order at most 1 (= tree constructors)

and

simply-typed recursion operators Yσ ∶ (σ → σ) → σ.

Here : G ↭ (Yo→o (λL.λx .if x (L (data x)))) Nil

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 7 / 23



Higher-order recursion schemes

In general, many reductions could be used to compute (prefixes of) ⟨G⟩:

L x y = a (M (N x)) (P y)

L b c →G

a

P

c

M

N

b

⟨G⟩ is computed by the head reduction →∞G , which reduces coinductively
the rules.

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 8 / 23



Higher-order model-checking

⟨G⟩ is computed using an infinite amount of substitutions and of
rule rewritings:

S →δ →∗β →δ ⋯ →∗β →δ ⋯ ⟨G⟩

We want to decide whether ⟨G⟩ ⊧ φ: we need to “backtrack” φ
coinductively along the reduction.

We design denotational models reflecting on terms the action of the
automaton Aφ corresponding to φ:

the denotation of a term reflects whether it satisfies φ,

usual invariance under β-reduction (inductive backtracking),

invariance under δ-reduction (coinductive backtracking).

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 9 / 23



Alternating tree automata

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 10 / 23



Alternating parity tree automata

For a MSO formula ϕ,

⟨G⟩ ⊧ ϕ

iff an equivalent APT Aϕ has a run over ⟨G⟩.

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 11 / 23



Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0,if) = (2,q0) ∧ (2,q1).

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 12 / 23



Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0,if) = (2,q0) ∧ (2,q1).

if q0

if

if

⋮data

data

Nil

data

Nil

Nil

Ð→Aϕ

if q0

if q1

if

⋮data

data

Nil

data

Nil

if q0

if

⋮data

data

Nil

data

Nil

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 12 / 23



Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0,if) = (2,q0) ∧ (2,q1).

This infinite process produces a run-tree of Aϕ over ⟨G⟩.

It is an infinite, unranked tree.

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 12 / 23



Alternating tree automata and linear logic

A→ B = !A⊸ B

A program of type A→ B

duplicates or drops elements of A

and then

uses linearly (= once) each copy

Just as alternating automata!

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 13 / 23



Alternating tree automata and linear logic

A→ B = !A⊸ B

We obtain finitary semantics (Scott semantics): set [[o]] = Q.

!A = Pfin(A)

[[o → o]] = Pfin(Q) ×Q

{q0, q0, q1} = {q0, q1}

Order closure

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 13 / 23



Alternating tree automata and linear logic

A→ B = !A⊸ B

We obtain finitary semantics (Scott semantics): set [[o]] = Q.

!A = Pfin(A)

[[o → o]] = Pfin(Q) ×Q

{q0, q0, q1} = {q0, q1}

Order closure

δ(q0,if) = (2,q0) ∧ (2,q1)

translates as

(∅, {q0, q1} ,q0) ∈ [[if]]

which notably implies

({q0} , {q0, q1} ,q0) ∈ [[if]]

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 13 / 23



Scott semantics and tree automata

These semantics are (prime algebraic) lattice semantics, and admit a
greatest fixpoint (coinductive), which interprets →δ.

The model is parameterized by Aφ. We obtain:

Theorem

⟨G⟩ ⊧ φ iff q0 ∈ [[S]] (in the model parameterized by Aφ).

No parity condition ⇒ φ is a weak MSO formula.

Corollary: decidability for weak MSO.

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 14 / 23



Parity conditions

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 15 / 23



Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 16 / 23



Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over ⟨G⟩ iff ⟨G⟩ ⊧ φ

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 17 / 23



The coloring comonad

Our work shows that coloring is a modality.
It defines a comonad in the semantics:

◻ A = Col ×A

which can be composed with !, so that

δ(q0,if) = (2,q0) ∧ (2,q1)
now corresponds to

(∅, {(Ω(q0), q0), (Ω(q1), q1)}, q0) ∈ [[if]]

in the semantics.

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 18 / 23



Parity conditions

In this setting, t has some type ◻c1 σ1 ∧ ◻c2 σ2 → τ .

The color labelling each occurence is the maximal color leading to it in the
normal form of t.

On applications, the comonad computes the maximal color (inductive
treatment).

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 19 / 23



An inductive-coinductive fixpoint operator

We define an inductive-coinductive fixpoint operator on denotations, which
composes inductively or coinductively elements of the semantics, according
to the current color.

It is a Conway operator (cf. Z. Esik’s talk).

Theorem (G.-Melliès 2015)

For a MSO formula φ, ⟨G⟩ ⊧ φ iff q0 ∈ [[G]] (parameterized by Aφ).

Corollary

The higher-order model-checking problem is decidable.

(since the semantics of a recursion scheme induce a finite parity game).

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 20 / 23



The selection problem

Even better: the selection problem is decidable.

If Aφ accepts ⟨G⟩,

there is a higher-order accepting run-tree of Aφ over ⟨G⟩,

and we can effectively compute a HORS reducing to ⟨G⟩.

(the key: annotate the rules with their denotation).

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 21 / 23



The selection problem

⎧⎪⎪⎨⎪⎪⎩
S = L Nil

L = λx .if x (L (data x))
becomes e.g.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sq0 = L{q0,q1}⊸q0 Nilq0 Nilq1

L{q0,q1}⊸q0 = λx{q0,q1}.

if∅⊸{q0,q1}⊸q0

L{q0}⊸q1

data{q0,q1}⊸q0

xq1xq0

L{q1}⊸q0

data{q0}⊸q1

xq0

L{q0}⊸q1 = ⋯
L{q1}⊸q0 = ⋯

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 22 / 23



Conclusion

Sort of static analysis of infinitary properties.

We lift to higher-order the behavior of APT.

Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

In these finitary semantics, we obtain decidability of HOMC and of
the selection problem.

In the proceedings: the technical aspects, and an equivalent
intersection type system.

Thank you for your attention!

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 23 / 23



Conclusion

Sort of static analysis of infinitary properties.

We lift to higher-order the behavior of APT.

Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

In these finitary semantics, we obtain decidability of HOMC and of
the selection problem.

In the proceedings: the technical aspects, and an equivalent
intersection type system.

Thank you for your attention!

Charles Grellois (PPS - LIAFA) Semantics and model-checking Aug 28, 2015 23 / 23


