Verifying properties of functional programs: from the deterministic to the probabilistic case

Charles Grellois (partly joint with Dal Lago and Melliès)

FOCUS Team - INRIA & University of Bologna

Séminaire général du Laboratoire d'Informatique Gaspard-Monge March 14, 2017

Functional programs, Higher-order models

Charles Grellois (INRIA & U. Bologna)

Verifying functional programs

March 14, 2017 2 / 75

一日、

Imperative vs. functional programs

• Imperative programs: built on finite state machines (like Turing machines).

Notion of state, global memory.

• Functional programs: built on functions that are composed together (like in Lambda-calculus).

No state (except in impure languages), higher-order: functions can manipulate functions.

(recall that Turing machines and λ -terms are equivalent in expressive power)

A (10) A (10) A (10)

Imperative vs. functional programs

• Imperative programs: built on finite state machines (like Turing machines).

Notion of state, global memory.

• Functional programs: built on functions that are composed together (like in Lambda-calculus).

No state (except in impure languages), higher-order: functions can manipulate functions.

(recall that Turing machines and λ -terms are equivalent in expressive power)

Example: imperative factorial

```
int fact(int n) {
    int res = 1;
    for i from 1 to n do {
        res = res * i;
        }
    }
    return res;
}
```

Typical way of doing: using a variable (change the state).

Example: functional factorial

```
In OCaml:
```

```
let rec factorial n =
    if n <= 1 then
        1
    else
        factorial (n-1) * n;;</pre>
```

Typical way of doing: using a recursive function (don't change the state).

In practice, forbidding global variables reduces considerably the number of bugs, especially in a parallel setting (cf. Erlang).

Advantages of functional programs

- Very mathematical: calculus of functions.
- ... and thus very much studied from a mathematical point of view. This notably leads to strong typing, a marvellous feature.
- Much less error-prone: no manipulation of global state.

More and more used, from Haskell and Caml to Scala, Javascript and even Java 8 nowadays.

Also emerging for probabilistic programming.

Price to pay: analysis of higher-order constructs.

Advantages of functional programs

Price to pay: analysis of higher-order constructs.

Example of higher-order function: map.

 $\min \varphi \ [0,1,2] \qquad \text{returns} \qquad [\varphi(0),\varphi(1),\varphi(2)].$

Higher-order: map is a function taking a function φ as input.

Advantages of functional programs

Price to pay: analysis of higher-order constructs.

- Function calls + recursivity = deal with stacks of calls → approaches for verification using automata with stacks of stacks of stacks... or with Krivine machines that also have a stack of calls
- Based on λ-calculus with recursion and types: we will use its semantics to do verification

That's the first goal of the talk.

(but that's only an approach among many others)

Probabilistic functional programs

Probabilistic programming languages are more and more pervasive in computer science: modeling uncertainty, robotics, cryptography, machine learning, Al...

What if we add probabilistic constructs?

In this talk:
$$M \oplus_p N \to_v \{M^p, N^{1-p}\}$$

Allows to simulate some random distributions, not all. In future work: add fully the two roots of probabilistic programming, drawing values at random from more probability distributions (typically on the reals), and conditioning which allows among others to do machine learning.

Probabilistic functional programs

Probabilistic programming languages are more and more pervasive in computer science: modeling uncertainty, robotics, cryptography, machine learning, Al...

What if we add probabilistic constructs?

In this talk: $M \oplus_p N \to_v \{ M^p, N^{1-p} \}$

Second goal of the talk. Go towards verification of probabilistic functional programs. We give an incomplete method for termination-checking and hints towards verification of more properties.

Using higher-order functions

Bending a coin in the probabilistic functional language Church:

```
var makeCoin = function(weight) {
  return function() {
    flip(weight) ? 'h' : 't'
  }
}
var bend = function(coin) {
  return function() {
    (coin() == 'h') ? makeCoin(0.7)() : makeCoin(0.1)()
  }
}
var fairCoin = makeCoin(0.5)
var bentCoin = bend(fairCoin)
viz(repeat(100,bentCoin))
```

Roadmap

- Semantics of linear logic for verification of deterministic functional programs
- A type system for termination of probabilistic functional programs
- Towards verification for the probabilistic case?

Modeling functional programs using higher-order recursion schemes

Charles Grellois (INRIA & U. Bologna)

Verifying functional programs

March 14, 2017 11 / 75

Model-checking

Approximate the program \longrightarrow build a model \mathcal{M} .

Then, formulate a logical specification φ over the model.

Aim: design a program which checks whether

 $\mathcal{M} \models \varphi$.

That is, whether the model \mathcal{M} meets the specification φ .

An example

Main = Listen Nil
Listen x = if end_signal() then x
else Listen received_data() :: x

3

An example

We abstracted conditionals and datatypes. The approximation contains a non-terminating branch.

Charles Grellois (INRIA & U. Bologna)

Verifying functional programs

Finite representations of infinite trees

is not regular: it is not the unfolding of a finite graph as

Charles Grellois (INRIA & U. Bologna)

Finite representations of infinite trees

but it is represented by a higher-order recursion scheme (HORS).

Main = Listen Nil
Listen x = if end_signal() then x
else Listen received_data() :: x

is abstracted as

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

which represents the higher-order tree of actions

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

Rewriting starts from the start symbol S:

1

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

Charles Grellois (INRIA & U. Bologna)

Verifying functional programs

March 14, 2017

16 / 75

March 14, 2017 16 / 75

1

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

HORS can alternatively be seen as simply-typed λ -terms with

simply-typed recursion operators Y_{σ} : $(\sigma \rightarrow \sigma) \rightarrow \sigma$.

They are also equi-expressive to pushdown automata with stacks of stacks of stacks... and a collapse operation.

Alternating parity tree automata

Checking specifications over trees

MSO is a common logic in verification, allowing to express properties as:

" all executions halt "

" a given operation is executed infinitely often in some execution "

" every time data is added to a buffer, it is eventually processed "

Alternating parity tree automata

Checking whether a formula holds can be performed using an automaton.

For an MSO formula φ , there exists an equivalent APT \mathcal{A}_{φ} s.t.

 $\langle \mathcal{G} \rangle \models \varphi$ iff \mathcal{A}_{φ} has a run over $\langle \mathcal{G} \rangle$.

APT = alternating tree automata (ATA) + parity condition.

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, if) = (2, q_0) \land (2, q_1).$

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, if) = (2, q_0) \wedge (2, q_1)$.

Alternating parity tree automata

Each state of an APT is attributed a color

 $\Omega(q) \in \mathit{Col} \subseteq \mathbb{N}$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.

Alternating parity tree automata

Each state of an APT is attributed a color

 $\Omega(q) \in \mathit{Col} \subseteq \mathbb{N}$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula φ :

 \mathcal{A}_{φ} has a winning run-tree over $\langle \mathcal{G} \rangle$ iff $\langle \mathcal{G} \rangle \models \varphi$.

The higher-order model-checking problems

3

The (local) HOMC problem

Input: HORS \mathcal{G} , formula φ .

Output: true if and only if $\langle \mathcal{G} \rangle \models \varphi$.

Example: $\varphi =$ "there is an infinite execution "

Output: true.

Charles Grellois (INRIA & U. Bologna)

(日) (周) (三) (三)

The (local) HOMC problem

Input: HORS \mathcal{G} , formula φ .

Output: true if and only if $\langle \mathcal{G} \rangle \models \varphi$.

Example: $\varphi =$ "there is an infinite execution "

Output: true.

Charles Grellois (INRIA & U. Bologna)

A 🖓 h

The global HOMC problem

Input: HORS \mathcal{G} , formula φ .

Output: a HORS \mathcal{G}^{\bullet} producing a marking of $\langle \mathcal{G} \rangle$.

Example: $\varphi =$ "there is an infinite execution "

Output: \mathcal{G}^{\bullet} of value tree:

3
The selection problem

Input: HORS \mathcal{G} , APT \mathcal{A} , state $q \in Q$.

Output: false if there is no winning run of \mathcal{A} over $\langle \mathcal{G} \rangle$. Else, a HORS \mathcal{G}^q producing a such a winning run.

Example: $\varphi =$ "there is an infinite execution", q_0 corresponding to φ

Output: \mathcal{G}^{q_0} producing

if^{q0} if^{q0} if^{q0} :

Our line of work (joint with Melliès)

These three problems are decidable, with elaborate proofs (often) relying on semantics.

Our contribution: an excavation of the semantic roots of HOMC, at the light of linear logic, leading to refined and clarified proofs.

Recognition by homomorphism

Where semantics comes into play

Automata and recognition

For the usual finite automata on words: given a regular language $L \subseteq A^*$,

there exists a finite automaton ${\mathcal A}$ recognizing L

if and only if...

there exists a finite monoid M, a subset $K \subseteq M$ and a homomorphism $\varphi : A^* \to M$ such that $L = \varphi^{-1}(K)$.

Automata and recognition

The picture we want:

(after Aehlig 2006, Salvati 2009)

but with recursion and w.r.t. an APT.

Intersection types and alternation

A first connection with linear logic

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

$$\delta(q_0, \texttt{if}) = (2, q_0) \wedge (2, q_1)$$

can be seen as the intersection typing

$$\texttt{if} \ : \ \emptyset \to (q_0 \wedge q_1) \to q_0$$

refining the simple typing

if :
$$o \rightarrow o \rightarrow o$$

Alternating tree automata and intersection types

In a derivation typing the tree if T_1 T_2 :

$$\begin{array}{c} \delta \\ \mathsf{App} \\ \overbrace{\mathsf{App}}^{\delta} & \underbrace{ \frac{\emptyset \vdash \mathtt{if} : \emptyset \to (q_0 \land q_1) \to q_0}{\emptyset \vdash \mathtt{if} \ T_1 : (q_0 \land q_1) \to q_0} }_{\emptyset \vdash \mathtt{if} \ T_1 \ T_2 : q_0} \\ \end{array} \\ \begin{array}{c} \vdots \\ \hline \emptyset \vdash \mathsf{T}_2 : q_0 \end{array}$$

Intersection types naturally lift to higher-order – and thus to \mathcal{G} , which finitely represents $\langle \mathcal{G} \rangle$.

Theorem (Kobayashi 2009) $\vdash \mathcal{G} : q_0$ iffthe ATA \mathcal{A}_{φ} has a run-tree over $\langle \mathcal{G} \rangle$.

- 4 週 ト - 4 三 ト - 4 三 ト

A closer look at the Application rule

In the intersection type system:

App
$$\frac{\Delta \vdash t : (\theta_1 \land \dots \land \theta_n) \to \theta \qquad \Delta_i \vdash u : \theta_i}{\Delta, \Delta_1, \dots, \Delta_n \vdash t u : \theta}$$

This rule could be decomposed as:

$$\frac{\Delta \vdash t : (\bigwedge_{i=1}^{n} \theta_{i}) \rightarrow \theta'}{\Delta_{1}, \dots, \Delta_{n} \vdash u : \theta'} \quad \frac{\Delta_{i} \vdash u : \theta_{i} \quad \forall i \in \{1, \dots, n\}}{\Delta_{1}, \dots, \Delta_{n} \vdash u : \bigwedge_{i=1}^{n} \theta_{i}} \quad \text{Right} \land$$

A closer look at the Application rule

In the intersection type system:

App
$$\frac{\Delta \vdash t : (\theta_1 \land \dots \land \theta_n) \to \theta \qquad \Delta_i \vdash u : \theta_i}{\Delta, \Delta_1, \dots, \Delta_n \vdash t u : \theta}$$

This rule could be decomposed as:

$$\frac{\Delta \vdash t : (\bigwedge_{i=1}^{n} \theta_{i}) \rightarrow \theta'}{\Delta_{1}, \dots, \Delta_{n} \vdash u : \beta'} \quad \frac{\Delta_{i} \vdash u : \theta_{i} \quad \forall i \in \{1, \dots, n\}}{\Delta_{1}, \dots, \Delta_{n} \vdash u : \bigwedge_{i=1}^{n} \theta_{i}} \quad \text{Right } \wedge$$

A closer look at the Application rule

$$\frac{\Delta \vdash t : (\bigwedge_{i=1}^{n} \theta_{i}) \rightarrow \theta'}{\Delta_{1}, \dots, \Delta_{n} \vdash u : \theta'} \quad \frac{\Delta_{i} \vdash u : \theta_{i} \quad \forall i \in \{1, \dots, n\}}{\Delta_{1}, \dots, \Delta_{n} \vdash u : \bigwedge_{i=1}^{n} \theta_{i}} \quad \text{Right } \wedge$$

Linear decomposition of the intuitionistic arrow:

$$A \Rightarrow B = !A \multimap B$$

Two steps: duplication / erasure, then linear use.

Right \land corresponds to the Promotion rule of indexed linear logic. (see G.-Melliès, ITRS 2014)

Charles Grellois (INRIA & U. Bologna)

Intersection types and semantics of linear logic

 $A \Rightarrow B = !A \multimap B$

Two interpretations of the exponential modality:

Qualitative models (Scott semantics)

 $!A = \mathcal{P}_{fin}(A)$

 $\llbracket o \Rightarrow o \rrbracket = \mathcal{P}_{fin}(Q) \times Q$

 $\{q_0, q_0, q_1\} = \{q_0, q_1\}$

Order closure

Quantitative models (Relational semantics)

$$|A = \mathcal{M}_{fin}(A)$$

$$\llbracket o \Rightarrow o \rrbracket = \mathcal{M}_{fin}(Q) \times Q$$

$$[q_0, q_0, q_1] \neq [q_0, q_1]$$

Unbounded multiplicities

An example of interpretation

In Rel, one denotation:

 $([q_0, q_1, q_1], [q_1], q_0)$

In *ScottL*, a set containing the principal type

 $(\{q_0, q_1\}, \{q_1\}, q_0)$

but also

and ...

 $(\{q_0, q_1, q_2\}, \{q_1\}, q_0)$

and

$$(\{q_0, q_1\}, \{q_0, q_1\}, q_0)$$

Intersection types and semantics of linear logic

Let t be a term normalizing to a tree $\langle t \rangle$ and \mathcal{A} be an alternating automaton.

 $\mathcal{A} \text{ accepts } \langle t \rangle \text{ from } q \ \Leftrightarrow \ q \in \llbracket t \rrbracket \ \Leftrightarrow \ \emptyset \ \vdash \ t \ : \ q \ :: \ o$

Extension with recursion and parity condition?

Adding parity conditions to the type system

An example of colored intersection type

Set $\Omega(q_0) = 0$ and $\Omega(q_1) = 1$.

has now type

$$\Box_0 \, q_0 \wedge \Box_1 \, q_1 o \Box_1 \, q_1 o q_1$$

Note the color 0 on q_0 ...

A type-system for verification

We devise a type system capturing all MSO:

Theorem (G.-Melliès 2014, from Kobayashi-Ong 2009)

 $S : q_0 \vdash S : q_0$ admits a winning typing derivation iff the alternating parity automaton A has a winning run-tree over $\langle \mathcal{G} \rangle$.

We obtain decidability by considering idempotent types.

Our reformulation

- shows the modal nature of \Box (in the sense of S4),
- internalizes the parity condition,
- paves the way for semantic constructions.

周下 イモト イモト

Colored semantics

We extend:

- *Rel* with countable multiplicities, coloring and an inductive-coinductive fixpoint
- ScottL with coloring and an inductive-coinductive fixpoint.

Methodology: think in the relational semantics, and adapt to the Scott semantics using Ehrhard's 2012 result:

the finitary model ScottL is the extensional collapse of Rel.

Finitary semantics

In ScottL, we define \Box , λ and **Y** using downward-closures. ScottL₄ is a model of the λY -calculus.

Theorem

An APT ${\mathcal A}$ has a winning run from q_0 over $\langle {\mathcal G} \rangle$ if and only if

 $q_0 \in \llbracket \lambda(\mathcal{G}) \rrbracket.$

Corollary

The local higher-order model-checking problem is decidable (and is n-EXPTIME complete).

We could also obtain global model-checking and selection.

Similar model-theoretic results were obtained by Salvati and Walukiewicz the same year.

Charles Grellois (INRIA & U. Bologna)

Probabilistic Termination

Checking a first property on probabilistic program

Motivations

- Probabilistic programming languages are more and more pervasive in computer science: modeling uncertainty, robotics, cryptography, machine learning, Al...
- Quantitative notion of termination: almost-sure termination (AST)
- AST has been studied for imperative programs in the last years...
- ... but what about the functional probabilistic languages?

We introduce a monadic, affine sized type system sound for AST.

Simply-typed λ -calculus is strongly normalizing (SN).

$$\frac{\Gamma, x : \sigma \vdash x : \sigma}{\Gamma \vdash \lambda x.M : \sigma \to \tau} \qquad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x.M : \sigma \to \tau}$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \qquad \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau}$$

where $\sigma, \tau ::= o \mid \sigma \to \tau$.

Forbids the looping term $\Omega = (\lambda x.x x)(\lambda x.x x)$.

Strong normalization: all computations terminate.

Simply-typed λ -calculus is strongly normalizing (SN).

No longer true with the letrec construction...

Sized types: a decidable extension of the simple type system ensuring SN for λ -terms with letrec.

See notably:

- Hughes-Pareto-Sabry 1996, *Proving the correctness of reactive systems using sized types*,
- Barthe-Frade-Giménez-Pinto-Uustalu 2004, *Type-based termination* of recursive definitions.

Sizes: $\mathfrak{s}, \mathfrak{r} ::= \mathfrak{i} \mid \infty \mid \widehat{\mathfrak{s}}$

+ size comparison underlying subtyping. Notably $\widehat{\infty}\equiv\infty.$

```
Idea: k successors = at most k constructors.

• Nat<sup>\hat{i}</sup> is 0,

• Nat<sup>\hat{i}</sup> is 0 or S 0,

• ...

• Nat<sup>\infty</sup> is any natural number. Often denoted simply Nat.
```

The same for lists,...

Sizes: $\mathfrak{s}, \mathfrak{r} ::= \mathfrak{i} \mid \infty \mid \widehat{\mathfrak{s}}$

+ size comparison underlying subtyping. Notably $\widehat{\infty}\equiv\infty.$

Fixpoint rule:

$$\frac{\Gamma, f : \operatorname{Nat}^{\mathfrak{i}} \to \sigma \vdash M : \operatorname{Nat}^{\widehat{\mathfrak{i}}} \to \sigma[\mathfrak{i}/\widehat{\mathfrak{i}}] \quad \mathfrak{i} \text{ pos } \sigma}{\Gamma \vdash \operatorname{letrec} f = M : \operatorname{Nat}^{\mathfrak{s}} \to \sigma[\mathfrak{i}/\mathfrak{s}]}$$

"To define the action of f on size n + 1, we only call recursively f on size at most n"

Sizes: $\mathfrak{s}, \mathfrak{r} ::= \mathfrak{i} \mid \infty \mid \widehat{\mathfrak{s}}$

+ size comparison underlying subtyping. Notably $\widehat{\infty} \equiv \infty$.

Fixpoint rule:

$$\frac{\Gamma, f : \operatorname{Nat}^{\mathfrak{i}} \to \sigma \vdash M : \operatorname{Nat}^{\widehat{\mathfrak{i}}} \to \sigma[\mathfrak{i}/\widehat{\mathfrak{i}}] \quad \mathfrak{i} \text{ pos } \sigma}{\Gamma \vdash \operatorname{letrec} f = M : \operatorname{Nat}^{\mathfrak{s}} \to \sigma[\mathfrak{i}/\mathfrak{s}]}$$

Typable \implies SN. Proof using reducibility candidates.

Decidable type inference.

Sized types: example in the deterministic case

From Barthe et al. (op. cit.):

plus = (letrec
$$plus_{:Nat \rightarrow Nat \rightarrow Nat} = \lambda x_{:Nat^{\hat{i}}} \lambda y_{:Nat}$$
. case x of {o $\Rightarrow y$
| s $\Rightarrow \lambda x'_{:Nat^{\hat{i}}}$. s $(plus x' y)$
}
) : Nat^s \rightarrow Nat \rightarrow Nat

The case rule ensures that the size of x' is lesser than the one of x. Size decreases during recursive calls \Rightarrow SN.

A probabilistic λ -calculus

$$M, N, \dots \qquad ::= \qquad V \quad | \quad V \quad V \quad | \quad \text{let } x = M \text{ in } N \quad | \quad M \oplus_p N$$
$$| \quad \text{case } V \text{ of } \{S \to W \mid 0 \to Z\}$$
$$V, W, Z, \dots \qquad ::= \qquad x \quad | \quad 0 \quad | \quad S \quad V \quad | \quad \lambda x.M \quad | \quad \text{letrec } f = V$$

- Formulation equivalent to λ-calculus with ⊕_p, but constrained for technical reasons (A-normal form)
- Restriction to base type Nat for simplicity, but can be extended to general inductive datatypes (as in sized types)

let
$$x = V$$
 in $M \rightarrow_v \left\{ (M[x/V])^1 \right\}$

$$(\lambda x.M) V \rightarrow_{v} \left\{ (M[x/V])^{1} \right\}$$

$$(\text{letrec } f = V) \ \left(c \ \overrightarrow{W}\right) \rightarrow_{v} \left\{ \left(V[f/(\text{letrec } f = V)] \ \left(c \ \overrightarrow{W}\right)\right)^{1} \right\}$$

Charles Grellois (INRIA & U. Bologna)

3

Image: A mathematical states and a mathem

case S V of
$$\{ S \rightarrow W \mid 0 \rightarrow Z \} \rightarrow_{v} \{ (W V)^{1} \}$$

case 0 of
$$\{ S \to W \mid 0 \to Z \} \to_{v} \{ (Z)^{1} \}$$

3

Image: A mathematical states and a mathem

$$M \oplus_{p} N \to_{v} \{ M^{p}, N^{1-p} \}$$

$$\frac{M \rightarrow_{v} \{L_{i}^{p_{i}} \mid i \in I\}}{\operatorname{let} x = M \text{ in } N \rightarrow_{v} \{(\operatorname{let} x = L_{i} \text{ in } N)^{p_{i}} \mid i \in I\}}$$

Charles Grellois (INRIA & U. Bologna)

Verifying functional programs

March 14, 2017 51 / 75

47 ▶

$$\begin{array}{cccc} \mathscr{D} & \stackrel{VD}{=} & \left\{ \begin{array}{ccc} M_{j}^{p_{j}} & \mid j \in J \end{array} \right\} + \mathscr{D}_{V} & \forall j \in J, & M_{j} & \rightarrow_{v} & \mathscr{E}_{j} \end{array} \\ & & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & &$$

For ${\mathscr D}$ a distribution of terms:

$$\llbracket \mathscr{D} \rrbracket = \sup_{n \in \mathbb{N}} \left(\left\{ \mathscr{D}_n \mid \mathscr{D} \Rightarrow_v^n \mathscr{D}_n \right\} \right)$$

where \Rightarrow_v^n is \rightarrow_v^n followed by projection on values.

We let $[\![M]\!] = [\![\{M^1\}]\!].$

M is AST iff $\sum \llbracket M \rrbracket = 1$.

Random walks as probabilistic terms

• Biased random walk:

$$M_{bias} = \left(\text{letrec } f = \lambda x. \text{case } x \text{ of } \left\{ \mathsf{S} \to \lambda y. f(y) \oplus_{\frac{2}{3}} (f(\mathsf{S} \mathsf{S} y)) \right) \mid 0 \to 0 \right\} \right) \underline{n}$$

• Unbiased random walk:

$$M_{unb} = \left(\text{letrec } f = \lambda x. \text{case } x \text{ of } \left\{ \mathsf{S} \to \lambda y. f(y) \oplus_{\frac{1}{2}} (f(\mathsf{S} \mathsf{S} y)) \right) \mid 0 \to 0 \right\} \right) \underline{n}$$

$$\sum \llbracket M_{bias} \rrbracket = \sum \llbracket M_{unb} \rrbracket = 1$$

Capture this in a sized type system?

Another term

We also want to capture terms as:

$$M_{nat} = \left(ext{letrec } f = \lambda x. x \oplus_{rac{1}{2}} \mathsf{S} \ (f \ x)
ight) 0$$

of semantics

$$\llbracket M_{nat} \rrbracket = \{ (0)^{\frac{1}{2}}, (S \ 0)^{\frac{1}{4}}, (S \ S \ 0)^{\frac{1}{8}}, \ldots \}$$

summing to 1.

Remark that this recursive function generates the geometric distribution.

Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Choice
$$\frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \oplus_{p} N : \sigma}$$

and "unify" types of M and N by subtyping.

Kind of product interpretation of \oplus : we can't capture more than SN...

Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Choice
$$\frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \oplus_{p} N : \sigma}$$

and "unify" types of M and N by subtyping.

We get at best

$$f : \operatorname{\mathsf{Nat}}^{\widehat{\widehat{\mathfrak{l}}}} \to \operatorname{\mathsf{Nat}}^{\infty} \ \vdash \ \lambda y.f(y) \oplus_{\frac{1}{2}} (f(\operatorname{\mathsf{SS}} y))) \ : \ \operatorname{\mathsf{Nat}}^{\widehat{\mathfrak{l}}} \to \operatorname{\mathsf{Nat}}^{\infty}$$

and can't use a variation of the letrec rule on that.
Beyond SN terms, towards distribution types

We will use distribution types, built as follows:

Choice
$$\frac{\Gamma \mid \Theta \vdash M : \mu \quad \Gamma \mid \Psi \vdash N : \nu \quad \{\mid \mu \mid\} = \{\mid \nu \mid\}}{\Gamma \mid \Theta \oplus_{\rho} \Psi \vdash M \oplus_{\rho} N : \mu \oplus_{\rho} \nu}$$

Now

$$f : \left\{ \left(\mathsf{Nat}^{i} \to \mathsf{Nat}^{\infty}\right)^{\frac{1}{2}}, \left(\mathsf{Nat}^{\widehat{\hat{i}}} \to \mathsf{Nat}^{\infty}\right)^{\frac{1}{2}} \right\}$$
$$\vdash$$
$$\lambda y.f(y) \oplus_{\frac{1}{2}} (f(\mathsf{SS}y))) : \mathsf{Nat}^{\widehat{i}} \to \mathsf{Nat}^{\infty}$$

Charles Grellois (INRIA & U. Bologna)

March 14, 2017 56 / 75

A 🖓

Designing the fixpoint rule

$$f : \left\{ \left(\mathsf{Nat}^{i} \to \mathsf{Nat}^{\infty}\right)^{\frac{1}{2}}, \left(\mathsf{Nat}^{\widehat{i}} \to \mathsf{Nat}^{\infty}\right)^{\frac{1}{2}} \right\}$$
$$\vdash$$
$$\lambda y.f(y) \oplus_{\frac{1}{2}} (f(\mathsf{SS}y))) : \mathsf{Nat}^{\widehat{i}} \to \mathsf{Nat}^{\infty}$$

induces a random walk on \mathbb{N} :

on n + 1, move to n with probability ¹/₂, on n + 2 with probability ¹/₂,
on 0, loop.

The type system ensures that there is no recursive call from size 0.

Random walk AST (= reaches 0 with proba 1) \Rightarrow termination.

Designing the fixpoint rule

$$\{|\Gamma|\} = \operatorname{Nat} i \notin \Gamma \text{ and } i \text{ positive in } \nu$$

$$\{ (\operatorname{Nat}^{\mathfrak{s}_j} \to \nu[i/\mathfrak{s}_j])^{P_j} \mid j \in J \} \text{ induces an AST sized walk}$$
Let Rec
$$\frac{\Gamma \mid f : \{ (\operatorname{Nat}^{\mathfrak{s}_j} \to \nu[i/\mathfrak{s}_j])^{P_j} \mid j \in J \} \vdash V : \operatorname{Nat}^{\widehat{i}} \to \nu[i/\widehat{i}]}{\Gamma \mid \emptyset \vdash \operatorname{letrec} f = V : \operatorname{Nat}^{\mathfrak{r}} \to \nu[i/\mathfrak{r}]}$$

Sized walk: AST is checked by an external PTIME procedure.

< 4 ₽ × <

3

Generalized random walks and the necessity of affinity

A crucial feature: our type system is affine.

Higher-order symbols occur at most once. Consider:

$$M_{naff} = \text{letrec } f = \lambda x.\text{case } x \text{ of } \left\{ \mathsf{S} \to \lambda y.f(y) \oplus_{\frac{2}{3}} (f(\mathsf{S} \mathsf{S} y); f(\mathsf{S} \mathsf{S} y)) \mid 0 \to 0 \right\}$$

The induced sized walk is AST.

Generalized random walks and the necessity of affinity Tree of recursive calls, starting from 1:

Leftmost edges have probability $\frac{2}{3}$; rightmost ones $\frac{1}{3}$.

This random process is not AST.

Problem: modelisation by sized walk only makes sense for affine programs. A nice subject reduction property, and:

Theorem (Typing soundness) If $\Gamma \mid \Theta \vdash M : \mu$, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

Conclusion of this part

Main features of the type system:

- Affine type system with distributions of types
- Sized walks induced by the letrec rule and solved by an external PTIME procedure
- Subject reduction + soundness for AST

Next steps:

- type inference (decidable again??)
- extensions with refinement types, non-affine terms

Towards Higher-Order Probabilistic Verification

Charles Grellois (INRIA & U. Bologna)

Verifying functional programs

March 14, 2017 62 / 75

Probabilistic HOMC

Nil

Probabilistic HOMC

Allows to represent probabilistic programs.

And to define higher-order regular Markov Decision Processes: those bisimilar to their encoding represented by a HORS.

(encoding of probabilities + payoffs in symbols)

Probabilistic automata

Idea: no longer verify φ but $\Pr_{\geq p} \varphi$.

- Step one: quantitative ATA.
- Step two: deal with colors and parity condition.

Probabilistic automata (PATA):

- ATA on non-probabilistic symbols
- + probabilistic behavior on choice symbol \oplus_p

Run-tree: labels (q, p_n, p_f) .

The root of a run-tree of probability p is labeled $(q_0, 1, p)$, where p is the probability with which we want the tree to satisfy the formula.

Charles Grellois (INRIA & U. Bologna)

Probabilistic alternating tree automata

Probabilistic behavior:

is labeled as

$$\begin{array}{c} \oplus_p \quad (q,\,p_n,\,p_f) \\ \hline b \quad (q,\,p \xrightarrow{\times p_n,\,p_f'}) \quad c \quad (q,\,(1-p) \times p_n,\,p_f-p_f') \end{array}$$

for some $p_f' \in [0, p_f]$ such that $p_f' \leq p \times p_n$ and $p_f - p_f' \leq (1 - p) \times p_n$.

Example of PATA run

arphi~=~ "all the branches of the tree contain data"

is modeled by the PATA:

- $\delta_1(q_0, {\tt data}) \;=\; (1, q_1)$,
- $\delta_1(q_1, \mathtt{data}) \;=\; (1, q_1)$,
- $\delta_1(q_0, \text{Nil}) = \perp$,
- $\delta_1(q_1, \text{Nil}) = \top$.

3

Example of PATA run

Charles Grellois (INRIA & U. Bologna)

Another example

 $\varphi~=~$ all the branches of the tree contain an even amount of data.

Associated automaton:

- $\delta_2(q_0, \mathtt{data}) \;=\; (1, q_1)$,
- $\delta_2(q_1, \mathtt{data}) = (1, q_0),$
- $\delta_2(q_0, \text{Nil}) = \top$,
- $\delta_2(q_1, \text{Nil}) = \bot$.

Another example

Intersection types for PATA

As for ATA, except for tree constructors:

$$\{(i, q_{ij}) \mid 1 \le i \le n, 1 \le j \le k_i\} \text{ satisfies } \delta_A(q, a)$$

 $\emptyset \vdash a: \bigwedge_{j=1}^{\kappa_1} (q_{1j}, p_n, p_f) \to \ldots \to \bigwedge_{j=1}^{\kappa_n} (q_{nj}, p_n, p_f) \to (q, p_n, p_f)$

$$\begin{array}{l} p_f' \in]0, p_f[\quad \text{and} \quad p_f' \leq p \times p_n \quad \text{and} \quad p_f - p_f' \leq (1-p) \times p_n \\ \emptyset \vdash \oplus_p \ : \ (q, p \times p_n, p_f') \rightarrow (q, (1-p) \times p_n, p_f - p_f') \rightarrow (q, p_n, p_f) \end{array}$$

$$\frac{q \in Q \quad \text{and} \quad p \times p_n \ge p_f}{\emptyset \vdash \oplus_p \ : \ (q, p \times p_n, p_f) \to \emptyset \to (q, p_n, p_f)}$$

$$\frac{q \in Q \quad \text{and} \quad (1-p) \times p_n \ge p_f}{\emptyset \vdash \oplus_p \, : \, \emptyset \rightarrow (q, (1-p) \times p_n, \, p_f) \rightarrow (q, p_n, p_f)}$$

Intersection types for PATA

Under connection Rel/non-idempotent types, we obtain a similar denotational theorem.

Note that $\llbracket o \rrbracket = Q \times [0,1] \times [0,1].$

3

くほと くほと くほと

PATA and quantitative μ -calculus

On The Satisfiability of Some Simple Probabilistic Logics

The probabilistic μ -calculi zoo

• $qm\mu = quantitative interpretation of \mu-calculus$ [HK	97,MM97]
$\blacktriangleright \ \cup = max, \ \cap = min, \ no \ PCTL, \ game \ characterization \ on \ finite \ models$	
• GPL = extension with finite nesting of $[\cdot]_{\succ p}$ quantifications	[CPN99]
 expresses PCTL* but neither ∃□a nor Lµ over Kripke structures no game characterization, alternation-free fragment 	
▶ $pL\mu_{\oplus}^{\odot}$ is $L\mu+$ Lukasiewicz-operators $+$ more	[MS13]
 probabilistic quantification = fixed point and multiplication (tree) game characterization over all models, encodes PCTL 	
• μ^p and μ PCTL	[CKP15]
 distinguishes between qualitative and quantitative formulas model checking µ^p-calculus is as hard as solving parity games poly-time model checking of µPCTL for bounded alternation depth 	
• $P\mu TL = L\mu + [\cdot]_{\succ p}$ for next-modalities	[LSWZ15]
 satisfiability by emptiness in prob. alt. parity automata (in 2EXPTIME) 	

Souymodip Chakraborty and Joost-Pieter Katoen

The Satisfiability of Some Simple Probabilistic Logics 12/19

(日) (同) (三) (三)

Charles Grellois (INRIA & U. Bologna)

э

PATA and quantitative μ -calculus

What we seem to capture: $\llbracket \varphi \rrbracket_{\emptyset}(\varepsilon) \ge p$ for safety formulas, with:

•
$$\llbracket \underline{a} \rrbracket_{\rho}(s) = 1$$
 iff label $(s) = a$, 0 else

•
$$[X]_{\rho}(s) = \rho(X)(s)$$

- $\llbracket \varphi \land \psi \rrbracket_{\rho}(s) = \min(\llbracket \varphi \rrbracket_{\rho}(s), \llbracket \psi \rrbracket_{\rho}(s))$
- $\llbracket \varphi \lor \psi \rrbracket_{\rho}(s) = \max(\llbracket \varphi \rrbracket_{\rho}(s), \llbracket \psi \rrbracket_{\rho}(s))$
- $\llbracket \Box \varphi \rrbracket_{\rho}(s) = \min \{ \llbracket \varphi \rrbracket_{\rho}(s') | s' \text{ successor of } s \}$
- $\llbracket \diamond \varphi \rrbracket_{\rho}(s) = \max \{\llbracket \varphi \rrbracket_{\rho}(s') \mid s' \text{ successor of } s\}$
- $\llbracket \nu X. \varphi \rrbracket_{\rho(s)} = \operatorname{gfp}(f \mapsto \llbracket \varphi \rrbracket_{\rho[f/X]})(s)$

We did not consider the quantitative operator $\odot \varphi$ but could add it, with

$$\llbracket \odot \varphi \rrbracket_{\rho}(s) = \sum_{s' \text{ succ } s} \Pr(s, s') \llbracket \varphi \rrbracket_{\rho}(s')$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

Why only safety?

Safety conditions \rightarrow all infinite branches are accepted.

Problem with automata: can not detect a priori sets of loosing branches.

That's why there is an *a posteriori* parity condition.

To capture it: a colored run-tree of probability

$$p - p_{bad}$$

is

- a run-tree of probability p,
- where p_{bad} is the measure of the set of rejecting (= odd-colored) branches in the run-tree.

But how to reflect that size in the typing?

Current directions

- Try to connect to the more general obligation games (Chatterjee-Piterman) and the probabilistic μ-calculus of Castro-Kilmurray-Piterman
- Dual approach: look for safety/reachability properties using probabilistic extensions of Kobayashi's type system

Conclusions

- Multiple approaches for higher-order model-checking, from theory to practice. Here, using semantics of linear logic to make the theory clearer.
- A type system for checking termination of affine probabilistic programs.
- Some preliminary hints to check for more than just termination properties.

Thank you for your attention!

Conclusions

- Multiple approaches for higher-order model-checking, from theory to practice. Here, using semantics of linear logic to make the theory clearer.
- A type system for checking termination of affine probabilistic programs.
- Some preliminary hints to check for more than just termination properties.

Thank you for your attention!