
Termination of higher-order probabilistic programs

Charles Grellois
(joint work with Ugo Dal Lago)

Aix-Marseille Université

Séminaire LIRICA
6 novembre 2017

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 1 / 40

Functional programs,

Higher-order models

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 2 / 40

Imperative vs. functional programs

Imperative programs: built on finite state machines (like Turing
machines).

Notion of state, global memory.

Functional programs: built on functions that are composed together
(like in Lambda-calculus).

No state (except in impure languages), higher-order: functions can
manipulate functions.

(Turing machines and λ-terms are equivalent in expressive power)

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 3 / 40

Imperative vs. functional programs

Imperative programs: built on finite state machines (like Turing
machines).

Notion of state, global memory.

Functional programs: built on functions that are composed together
(like in Lambda-calculus).

No state (except in impure languages), higher-order: functions can
manipulate functions.

(Turing machines and λ-terms are equivalent in expressive power)

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 3 / 40

Example: imperative factorial

int fact(int n) {

int res = 1;

for i from 1 to n do {

res = res * i;

}

}

return res;

}

Typical way of doing: using a variable (change the state).

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 4 / 40

Example: functional factorial

In OCaml:

let rec factorial n =

if n <= 1 then

1

else

factorial (n-1) * n;;

Typical way of doing: using a recursive function (don’t change the state).

In practice, forbidding global variables reduces considerably the number of
bugs, especially in a parallel setting (cf. Erlang).

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 5 / 40

Advantages of functional programs

Very mathematical: calculus of functions.

. . . and thus very much studied from a mathematical point of view.
This notably leads to strong typing, a marvellous feature.

Much less error-prone: no manipulation of global state.

More and more used, from Haskell and Caml to Scala, Javascript and even
Java 8 nowadays.

Also emerging for probabilistic programming.

Price to pay: analysis of higher-order constructs.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 6 / 40

Advantages of functional programs

Price to pay: analysis of higher-order constructs.

Example of higher-order function: map.

map ϕ [0, 1, 2] returns [ϕ(0), ϕ(1), ϕ(2)].

Higher-order: map is a function taking a function ϕ as input.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 7 / 40

Probabilistic functional programs

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography, machine
learning, AI. . .

What if we add probabilistic constructs?

In this talk: M ⊕p N →v

{
Mp, N1−p }

Allows to simulate some random distributions, not all. In future work: add
fully the two roots of probabilistic programming, drawing values at random
from more probability distributions (typically on the reals), and
conditioning which allows among others to do machine learning.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 8 / 40

Using higher-order functions

Bending a coin in the probabilistic functional language Church:

var makeCoin = function(weight) {

return function() {

flip(weight) ? ’h’ : ’t’

}

}

var bend = function(coin) {

return function() {

(coin() == ’h’) ? makeCoin(0.7)() : makeCoin(0.1)()

}

}

var fairCoin = makeCoin(0.5)

var bentCoin = bend(fairCoin)

viz(repeat(100,bentCoin))

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 9 / 40

Motivations

Quantitative notion of termination: almost-sure termination (AST)
which is notably required to do probabilistic inference. . .

AST has been studied for imperative programs in the last years. . .

. . . but what about the functional probabilistic languages?

Goal of the talk. Go towards verification of probabilistic functional
programs. We give an incomplete method for termination-checking.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 10 / 40

Roadmap

1 A few words on the λ-calculus with recursion

2 A type system for termination of probabilistic functional programs

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 11 / 40

A few words on the λ-calculus

Definition, simply-typed fragment, recursion, natural numbers

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 12 / 40

λ-terms

Grammar:

M, N ::= x
∣∣ λx .M ∣∣ M N

Calculus of functions:

x is a variable,

λx .M is intuitively a function x 7→ M,

M N is the application of functions.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 13 / 40

λ-terms

Grammar:

M, N ::= x
∣∣ λx .M ∣∣ M N

Examples:

λx .x : identity x 7→ x ,

λx .y : constant function x 7→ y ,

(λx .x) y : application of the identity to y ,

∆ = λx .x x : duplication.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 13 / 40

β-reduction

(λx .x) y

is an application of functions which should compute y :

(λx .x) y →β y

Beta-reduction gives the dynamics of the calculus.
(= the evaluation of the functions/programs).

This calculus is equivalent in expressive power, for functions N→ N, to
Turing machines.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 14 / 40

β-reduction

Formally:

(λx .M) N →β M[x/N]

Examples:

(λx .y) z →β y

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 15 / 40

β-reduction

Formally:

(λx .M) N →β M[x/N]

Examples:

(λf .λx .f (f x)) (g g) y

→β (λx .g (g (g (g x)))) y

→β g (g (g (g y)))

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 15 / 40

The looping term Ω

Just like with Turing machines, there are computations that never stop.

Set Ω = ∆ ∆ = (λx .x x)(λx .x x).

Then:

Ω = (λx .x x)(λx .x x)

→β (x x) [x/λx .x x] = Ω

→β Ω

→β . . .

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 16 / 40

The looping term Ω

Just like with Turing machines, there are computations that never stop.
But that may depend on how we compute.

(λx .y) Ω →β y

if we reduce the first redex, or

(λx .y) Ω →β (λx .y) Ω

if we try to reduce the second (inside Ω). . .

Weak normalization: at least one way of computing terminates

Strong normalization (SN): all ways of computing terminate.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 17 / 40

Simple types and strong normalization

Problem with Ω: it contains x x .
So x is at the same time a function and an argument of this function.

Simple types forbid this: you have to be a function A→ A or an argument
of type A, but not both.

It is enough to guarantee strong normalization:

M has a simple type ⇒ M is SN.

It’s an incomplete characterization: ∆ = λx .x x is SN (no way to reduce
it!) but not typable.
(simple typing is decidable, so it couldn’t be complete).

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 18 / 40

Simple types

Simple types: σ, τ ::= o
∣∣ σ → τ .

Γ, x : σ ` x : σ
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ

Γ ` M : σ → τ Γ ` N : σ
Γ ` M N : τ

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 19 / 40

Recursion
We can add recursion with a new construct:

M, N ::= · · ·
∣∣ letrec f = M

a new rewrite rule:

letrec f = M → M[f /letrec f = M]

and a new typing rule:

Γ, f : σ → τ ` M : σ → τ

Γ ` letrec f = M : σ → τ

which does not guarantee SN: letrec f = f is typable and loops forever.
Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 20 / 40

Natural numbers
A way to add natural numbers: add them as constructors built inductively,
together with a destructor (pattern-matching).

M, N ::= · · ·
∣∣ 0

∣∣ S M
∣∣ case M of

{
S→ N

∣∣ 0→ L
}

Reductions:

case S M of
{

S→ N
∣∣ 0→ L

}
→ N M

case 0 of
{

S→ N
∣∣ 0→ L

}
→ L

Note: all we do in this talk can be done with inductive types (lists,
trees. . .)

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 21 / 40

Natural numbers

A way to add natural numbers: add them as constructors built inductively,
together with a destructor (pattern-matching).

M, N ::= · · ·
∣∣ 0

∣∣ S M
∣∣ case M of

{
S→ N

∣∣ 0→ L
}

Typing:

Γ ` 0 : Nat
Γ ` M : Nat

Γ ` S M : Nat

Γ ` M : Nat Γ ` N : Nat→ σ Γ ` L : σ
Γ ` case M of

{
S→ N

∣∣ 0→ L
}

: σ

where we consider o = Nat.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 21 / 40

Sized Types and Termination

A sound termination check for the deterministic case

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 22 / 40

Sized types: the deterministic case

Sized types: a decidable extension of the simple type system ensuring SN
for λ-terms with letrec.

Fundamental idea of typing: types describe properties of programs.
In sized types: properties linked with termination properties.

See notably:

Hughes-Pareto-Sabry 1996, Proving the correctness of reactive
systems using sized types,

Barthe-Frade-Giménez-Pinto-Uustalu 2004, Type-based termination
of recursive definitions.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 23 / 40

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Idea: k successors = at most k constructors.

Nat̂i is 0,

Nat̂̂i is 0 or S 0,

. . .

Nat∞ is any natural number. Often denoted simply Nat.

The same for lists,. . .

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 24 / 40

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

“To define the action of f on size n + 1,
we only call recursively f on size at most n”

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 24 / 40

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

Typable =⇒ SN. Proof using reducibility candidates.

Decidable type inference: no completeness, but of practical use.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 24 / 40

Sized types: example in the deterministic case

From Barthe et al. (op. cit.):

The case rule ensures that the size of x ′ is lesser than the one of x .
Size decreases during recursive calls ⇒ SN.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 25 / 40

Probabilistic Termination

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 26 / 40

A probabilistic λ-calculus

M, N, . . . ::= V
∣∣ V V

∣∣ let x = M in N
∣∣ M ⊕p N∣∣ case V of { S→W | 0→ Z }

V , W , Z , . . . ::= x
∣∣ 0

∣∣ S V
∣∣ λx .M ∣∣ letrec f = V

Formulation equivalent to λ-calculus with ⊕p, but constrained for
technical reasons (A-normal form)

Restriction to base type Nat for simplicity, but can be extended to
general inductive datatypes (as in sized types)

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 27 / 40

A probabilistic λ-calculus: operational semantics

let x = V in M →v

{
(M[x/V])1

}

(λx .M) V →v

{
(M[x/V])1

}

(letrec f = V)
(
c
−→
W
)
→v

{(
V [f / (letrec f = V)]

(
c
−→
W
))1

}

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 28 / 40

A probabilistic λ-calculus: operational semantics

case S V of {S→W | 0→ Z } →v

{
(W V)1

}

case 0 of { S→W | 0→ Z } →v

{
(Z)1

}

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 29 / 40

A probabilistic λ-calculus: operational semantics

M ⊕p N →v

{
Mp, N1−p }

M →v

{
Lpii

∣∣ i ∈ I
}

let x = M in N →v

{
(let x = Li in N)pi

∣∣ i ∈ I
}

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 30 / 40

A probabilistic λ-calculus: operational semantics

D
VD
=

{
M

pj
j

∣∣ j ∈ J
}

+ DV ∀j ∈ J, Mj →v Ej

D →v

(∑
j∈J pj · Ej

)
+ DV

For D a distribution of terms:

[[D]] = supn∈N
({

Dn

∣∣ D Vn
v Dn

})
where Vn

v is →n
v followed by projection on values.

We let [[M]] = [[
{
M1
}

]].

M is AST iff
∑

[[M]] = 1.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 31 / 40

Random walks as probabilistic terms

Biased random walk:

Mbias =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y)))
∣∣ 0→ 0

})
n
¯

Unbiased random walk:

Munb =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

})
n
¯

∑
[[Mbias]] =

∑
[[Munb]] = 1

Capture this in a sized type system?

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 32 / 40

Another term

We also want to capture terms as:

Mnat =
(

letrec f = λx .x ⊕ 1
2

S (f x)
)

0

of semantics

[[Mnat]] =
{

(0)
1
2 , (S 0)

1
4 , (S S 0)

1
8 , . . .

}
summing to 1.

Remark that this recursive function generates the geometric distribution.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 33 / 40

Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

Kind of product interpretation of ⊕: we can’t capture more than SN. . .

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 34 / 40

Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

We get at best

f : Nat̂̂i → Nat∞ ` λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

and can’t use a variation of the letrec rule on that.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 34 / 40

Beyond SN terms, towards distribution types

We will use distribution types, built as follows:

Γ |Θ ` M : µ Γ |Ψ ` N : ν {|µ |} = {| ν |}
Choice

Γ |Θ⊕p Ψ ` M ⊕p N : µ⊕p ν

Now

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 35 / 40

Designing the fixpoint rule

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

induces a random walk on N:

on n + 1, move to n with probability 1
2 , on n + 2 with probability 1

2 ,

on 0, loop.

The type system ensures that there is no recursive call from size 0.

Random walk AST (= reaches 0 with proba 1) ⇒ termination.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 36 / 40

Designing the fixpoint rule

{| Γ |} = Nat

i /∈ Γ and i positive in ν{
(Natsj → ν[i/sj])

pj
∣∣ j ∈ J

}
induces an AST sized walk

Γ | f :
{

(Natsj → ν[i/sj])
pj
∣∣ j ∈ J

}
` V : Nat̂i → ν[i/̂i]

LetRec
Γ | ∅ ` letrec f = V : Natr → ν[i/r]

Sized walk: AST is checked by an external PTIME procedure.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 36 / 40

Generalized random walks and the necessity of affinity

A crucial feature: our type system is affine.

Higher-order symbols occur at most once. Consider:

Mnaff = letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y) ; f (S S y))
∣∣ 0→ 0

}

The induced sized walk is AST.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 37 / 40

Generalized random walks and the necessity of affinity
Tree of recursive calls, starting from 1:

[1]

[2 2]

[2 3 3]

...

[2 1]

[2 2 2]

...

[2]

[3 3]

...

[1]

[2 2]

...

[0]

[0]

Leftmost edges have
probability 2

3 ;
rightmost ones 1

3 .

This random process
is not AST.

Problem:
modelisation by sized
walk only makes
sense for affine
programs.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 38 / 40

Key properties

A nice subject reduction property, and:

Theorem (Typing soundness)

If Γ |Θ ` M : µ, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 39 / 40

Conclusion
Main features of the type system:

Affine type system with distributions of types

Sized walks induced by the letrec rule and solved by an external
PTIME procedure

Subject reduction + soundness for AST

Next steps:

type inference (decidable again??)

extensions with refinement types, non-affine terms

and use implicit complexity to give type systems for probabilistic
complexity classes

Thank you for your attention!

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 40 / 40

Conclusion
Main features of the type system:

Affine type system with distributions of types

Sized walks induced by the letrec rule and solved by an external
PTIME procedure

Subject reduction + soundness for AST

Next steps:

type inference (decidable again??)

extensions with refinement types, non-affine terms

and use implicit complexity to give type systems for probabilistic
complexity classes

Thank you for your attention!

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 40 / 40

