#### Termination of higher-order probabilistic programs

Charles Grellois (joint work with Ugo Dal Lago)

Aix-Marseille Université

Séminaire LIRICA 6 novembre 2017

→ Ξ →

# Functional programs, Higher-order models

A (10) F (10)

#### Imperative vs. functional programs

• Imperative programs: built on finite state machines (like Turing machines).

#### Notion of state, global memory.

• Functional programs: built on functions that are composed together (like in Lambda-calculus).

No state (except in impure languages), higher-order: functions can manipulate functions.

(Turing machines and  $\lambda$ -terms are equivalent in expressive power)

Image: A image: A

Imperative vs. functional programs

• Imperative programs: built on finite state machines (like Turing machines).

Notion of state, global memory.

• Functional programs: built on functions that are composed together (like in Lambda-calculus).

No state (except in impure languages), higher-order: functions can manipulate functions.

(Turing machines and  $\lambda$ -terms are equivalent in expressive power)

#### Example: imperative factorial

```
int fact(int n) {
    int res = 1;
    for i from 1 to n do {
        res = res * i;
        }
    }
    return res;
}
```

Typical way of doing: using a variable (change the state).

< ∃ > <

#### Example: functional factorial

```
In OCaml:
```

```
let rec factorial n =
    if n <= 1 then
    1
    else
      factorial (n-1) * n;;</pre>
```

Typical way of doing: using a recursive function (don't change the state).

In practice, forbidding global variables reduces considerably the number of bugs, especially in a parallel setting (cf. Erlang).

#### Advantages of functional programs

- Very mathematical: calculus of functions.
- ... and thus very much studied from a mathematical point of view. This notably leads to strong typing, a marvellous feature.
- Much less error-prone: no manipulation of global state.

More and more used, from Haskell and Caml to Scala, Javascript and even Java 8 nowadays.

Also emerging for probabilistic programming.

Price to pay: analysis of higher-order constructs.

### Advantages of functional programs

Price to pay: analysis of higher-order constructs.

Example of higher-order function: map.

 $\min \varphi \ [0,1,2] \qquad \text{ returns } \qquad [\varphi(0),\varphi(1),\varphi(2)].$ 

Higher-order: map is a function taking a function  $\varphi$  as input.

## Probabilistic functional programs

Probabilistic programming languages are more and more pervasive in computer science: modeling uncertainty, robotics, cryptography, machine learning, Al...

What if we add probabilistic constructs?

In this talk: 
$$M \oplus_p N \to_v \{M^p, N^{1-p}\}$$

Allows to simulate some random distributions, not all. In future work: add fully the two roots of probabilistic programming, drawing values at random from more probability distributions (typically on the reals), and conditioning which allows among others to do machine learning.

### Using higher-order functions

Bending a coin in the probabilistic functional language Church:

```
var makeCoin = function(weight) {
  return function() {
    flip(weight) ? 'h' : 't'
  }
}
var bend = function(coin) {
  return function() {
    (coin() == 'h') ? makeCoin(0.7)() : makeCoin(0.1)()
  }
}
var fairCoin = makeCoin(0.5)
var bentCoin = bend(fairCoin)
viz(repeat(100,bentCoin))
```

#### Motivations

- Quantitative notion of termination: almost-sure termination (AST) which is notably required to do probabilistic inference...
- AST has been studied for imperative programs in the last years...
- ... but what about the functional probabilistic languages?

Goal of the talk. Go towards verification of probabilistic functional programs. We give an incomplete method for termination-checking.

#### Roadmap

- ② A type system for termination of probabilistic functional programs

- E

## A few words on the $\lambda\text{-calculus}$

Definition, simply-typed fragment, recursion, natural numbers

#### $\lambda$ -terms

Grammar:

$$M, N ::= x \mid \lambda x.M \mid M N$$

Calculus of functions:

- x is a variable,
- $\lambda x.M$  is intuitively a function  $x \mapsto M$ ,
- *M N* is the application of functions.

#### $\lambda$ -terms

Grammar:

$$M, N ::= x \mid \lambda x.M \mid M N$$

Examples:

- $\lambda x.x$  : identity  $x \mapsto x$ ,
- $\lambda x.y$  : constant function  $x \mapsto y$ ,
- $(\lambda x.x)$  y : application of the identity to y,
- $\Delta = \lambda x \cdot x \times x$ : duplication.

• • = • • = •

#### $\beta$ -reduction

 $(\lambda x.x) y$ 

is an application of functions which should compute *y*:

 $(\lambda x.x) y \rightarrow_{\beta} y$ 

Beta-reduction gives the dynamics of the calculus. (= the evaluation of the functions/programs).

This calculus is equivalent in expressive power, for functions  $\mathbb{N}\to\mathbb{N},$  to Turing machines.

くほと くほと くほと

#### $\beta$ -reduction

Formally:

#### $(\lambda x.M) \ N \rightarrow_{\beta} \ M[x/N]$

Examples:

 $(\lambda x.y) z \rightarrow_{\beta} y$ 

Charles Grellois (AMU)

Termination of probabilistic programs

▶ < ≣ ▶ ≣ ∽ < @ Nov 6, 2017 15 / 40

イロト イポト イヨト イヨト

#### $\beta$ -reduction

Formally:

$$(\lambda x.M) \ N \rightarrow_{\beta} \ M[x/N]$$

Examples:

$$\begin{array}{l} (\lambda f.\lambda x.f~(f~x))~(g~g)~y\\ \rightarrow_{\beta} ~(\lambda x.g~(g~(g~(g~x))))~y\\ \rightarrow_{\beta} ~g~(g~(g~(g~y)))\end{array}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

#### The looping term $\boldsymbol{\Omega}$

Just like with Turing machines, there are computations that never stop.

Set 
$$\Omega = \Delta \Delta = (\lambda x.x x)(\lambda x.x x)$$
.

Then:

$$\Omega = (\lambda x.x \ x)(\lambda x.x \ x)$$
  

$$\rightarrow_{\beta} (x \ x) [x/\lambda x.x \ x] = \Omega$$
  

$$\rightarrow_{\beta} \Omega$$
  

$$\rightarrow_{\beta} \dots$$

### The looping term $\boldsymbol{\Omega}$

Just like with Turing machines, there are computations that never stop. But that may depend on how we compute.

$$(\lambda x.y) \ \Omega \ o_eta \ y$$

if we reduce the first redex, or

$$(\lambda x.y) \ \Omega \ \ o_{eta} \ \ (\lambda x.y) \ \Omega$$

if we try to reduce the second (inside  $\Omega$ )...

- Weak normalization: at least one way of computing terminates
- Strong normalization (SN): all ways of computing terminate.

#### Simple types and strong normalization

Problem with  $\Omega$ : it contains x x.

So x is at the same time a function and an argument of this function.

Simple types forbid this: you have to be a function  $A \rightarrow A$  or an argument of type A, but not both.

It is enough to guarantee strong normalization:

*M* has a simple type  $\Rightarrow$  *M* is SN.

It's an incomplete characterization:  $\Delta = \lambda x.x x$  is SN (no way to reduce it!) but not typable. (simple typing is decidable, so it couldn't be complete).

#### Simple types

Simple types:  $\sigma, \tau ::= o \mid \sigma \to \tau$ .

$$\frac{\Gamma, x : \sigma \vdash x : \sigma}{\Gamma \vdash \lambda x.M : \sigma \to \tau} \qquad \frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash \lambda x.M : \sigma \to \tau}$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau}$$

イロト 不得 トイヨト イヨト 二日

#### Recursion

We can add recursion with a new construct:

$$M, N ::= \cdots$$
 | letrec  $f = M$ 

a new rewrite rule:

letrec 
$$f = M \rightarrow M[f/\text{letrec } f = M]$$

and a new typing rule:

$$\frac{\Gamma, f : \sigma \to \tau \vdash M : \sigma \to \tau}{\Gamma \vdash \text{letrec } f = M : \sigma \to \tau}$$

which does not guarantee SN: letrec f = f is typable and loops forever

#### Natural numbers

A way to add natural numbers: add them as constructors built inductively, together with a destructor (pattern-matching).

$$M, N ::= \cdots \mid 0 \mid S M \mid case M of \{S \rightarrow N \mid 0 \rightarrow L\}$$

Reductions:

case S M of 
$$\{ S \rightarrow N \mid 0 \rightarrow L \} \rightarrow N M$$
  
case 0 of  $\{ S \rightarrow N \mid 0 \rightarrow L \} \rightarrow L$ 

Note: all we do in this talk can be done with inductive types (lists, trees...)

Charles Grellois (AMU)

Termination of probabilistic programs

Nov 6, 2017 21 / 40

#### Natural numbers

A way to add natural numbers: add them as constructors built inductively, together with a destructor (pattern-matching).

$$M, N ::= \cdots \mid 0 \mid S M \mid case M of \{S \to N \mid 0 \to L\}$$
  
Typing:  
$$\overline{\Gamma \vdash 0 : \text{Nat}} \qquad \overline{\Gamma \vdash M : \text{Nat}}$$
$$\frac{\Gamma \vdash M : \text{Nat}}{\Gamma \vdash S M : \text{Nat}}$$
$$\frac{\Gamma \vdash M : \text{Nat}}{\Gamma \vdash case M of \{S \to N \mid 0 \to L\} : \sigma}$$

where we consider o = Nat.

## Sized Types and Termination

A sound termination check for the deterministic case

Sized types: a decidable extension of the simple type system ensuring SN for  $\lambda$ -terms with letrec.

Fundamental idea of typing: types describe properties of programs. In sized types: properties linked with termination properties.

See notably:

- Hughes-Pareto-Sabry 1996, *Proving the correctness of reactive systems using sized types*,
- Barthe-Frade-Giménez-Pinto-Uustalu 2004, *Type-based termination* of recursive definitions.

Sizes:  $\mathfrak{s}, \mathfrak{r} ::= \mathfrak{i} \mid \infty \mid \widehat{\mathfrak{s}}$ 

+ size comparison underlying subtyping. Notably  $\widehat{\infty}\equiv\infty.$ 

```
Idea: k successors = at most k constructors.
Nat<sup>î</sup> is 0,
Nat<sup>î</sup> is 0 or S 0,
...
Nat<sup>∞</sup> is any natural number. Often denoted simply Nat.
```

The same for lists,...

Sizes:  $\mathfrak{s}, \mathfrak{r} ::= \mathfrak{i} \mid \infty \mid \widehat{\mathfrak{s}}$ 

+ size comparison underlying subtyping. Notably  $\widehat{\infty}\equiv\infty.$ 

Fixpoint rule:

$$\frac{\Gamma, f : \operatorname{Nat}^{\mathfrak{i}} \to \sigma \vdash M : \operatorname{Nat}^{\widehat{\mathfrak{i}}} \to \sigma[\mathfrak{i}/\widehat{\mathfrak{i}}] \quad \mathfrak{i} \text{ pos } \sigma}{\Gamma \vdash \operatorname{letrec} f = M : \operatorname{Nat}^{\mathfrak{s}} \to \sigma[\mathfrak{i}/\mathfrak{s}]}$$

#### "To define the action of f on size n + 1, we only call recursively f on size at most n"

Charles Grellois (AMU)

Sizes:  $\mathfrak{s}, \mathfrak{r} ::= \mathfrak{i} \mid \infty \mid \widehat{\mathfrak{s}}$ 

+ size comparison underlying subtyping. Notably  $\widehat{\infty}\equiv\infty.$ 

Fixpoint rule:

$$\frac{\Gamma, f : \operatorname{Nat}^{\mathfrak{i}} \to \sigma \vdash M : \operatorname{Nat}^{\widehat{\mathfrak{i}}} \to \sigma[\mathfrak{i}/\widehat{\mathfrak{i}}] \quad \mathfrak{i} \text{ pos } \sigma}{\Gamma \vdash \operatorname{letrec} f = M : \operatorname{Nat}^{\mathfrak{s}} \to \sigma[\mathfrak{i}/\mathfrak{s}]}$$

Typable  $\implies$  SN. Proof using reducibility candidates.

Decidable type inference: no completeness, but of practical use.

Charles Grellois (AMU)

#### Sized types: example in the deterministic case

From Barthe et al. (op. cit.):

plus = (letrec 
$$plus_{:Nat \rightarrow Nat} = \lambda x_{:Nat^{\circ}} \lambda y_{:Nat}$$
. case x of {o  $\Rightarrow y$   
| s  $\Rightarrow \lambda x'_{:Nat'}$ . s  $(plus x' y)$   
}  
) : Nat<sup>s</sup>  $\rightarrow$  Nat  $\rightarrow$  Nat

The case rule ensures that the size of x' is lesser than the one of x. Size decreases during recursive calls  $\Rightarrow$  SN.

## **Probabilistic Termination**

### A probabilistic $\lambda$ -calculus

$$M, N, \dots ::= V \mid V V \mid \text{let } x = M \text{ in } N \mid M \oplus_p N$$
$$\mid \text{ case } V \text{ of } \{S \to W \mid 0 \to Z\}$$
$$V, W, Z, \dots ::= x \mid 0 \mid S V \mid \lambda x.M \mid \text{letrec } f = V$$

- Formulation equivalent to λ-calculus with ⊕<sub>p</sub>, but constrained for technical reasons (A-normal form)
- Restriction to base type Nat for simplicity, but can be extended to general inductive datatypes (as in sized types)

let 
$$x = V$$
 in  $M \rightarrow_v \left\{ (M[x/V])^1 \right\}$ 

$$(\lambda x.M) \ V \rightarrow_{v} \left\{ (M[x/V])^{1} \right\}$$

$$(\text{letrec } f = V) \ \left(c \ \overrightarrow{W}\right) \rightarrow_{v} \left\{ \left(V[f/(\text{letrec } f = V)] \ \left(c \ \overrightarrow{W}\right)\right)^{1} \right\}$$

Image: A match a ma

case S V of 
$$\{ S \rightarrow W \mid 0 \rightarrow Z \} \rightarrow_{v} \{ (W V)^{1} \}$$

case 0 of 
$$\{ S \to W \mid 0 \to Z \} \to_{v} \{ (Z)^{1} \}$$

Image: A match a ma

$$M \oplus_{p} N \to_{v} \{ M^{p}, N^{1-p} \}$$

$$\frac{M \rightarrow_{v} \{L_{i}^{p_{i}} \mid i \in I\}}{|\text{let } x = M \text{ in } N \rightarrow_{v} \{(\text{let } x = L_{i} \text{ in } N)^{p_{i}} \mid i \in I\}}$$

$$\begin{array}{cccc} \mathscr{D} & \stackrel{VD}{=} & \left\{ \begin{array}{ccc} M_{j}^{p_{j}} & \mid j \in J \end{array} \right\} + \mathscr{D}_{V} & \forall j \in J, & M_{j} & \rightarrow_{v} & \mathscr{E}_{j} \end{array} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & &$$

For  ${\mathscr D}$  a distribution of terms:

$$\llbracket \mathscr{D} \rrbracket = \sup_{n \in \mathbb{N}} \left( \left\{ \mathscr{D}_n \mid \mathscr{D} \Rightarrow_v^n \mathscr{D}_n \right\} \right)$$

where  $\Rightarrow_v^n$  is  $\rightarrow_v^n$  followed by projection on values.

We let  $[\![M]\!] = [\![\{M^1\}]\!].$ 

M is AST iff  $\sum \llbracket M \rrbracket = 1$ .

#### Random walks as probabilistic terms

• Biased random walk:

$$M_{bias} = \left( \text{letrec } f = \lambda x. \text{case } x \text{ of } \left\{ \mathsf{S} \to \lambda y. f(y) \oplus_{\frac{2}{3}} (f(\mathsf{S} \mathsf{S} y)) \right) \mid 0 \to 0 \right\} \right) \underline{n}$$

• Unbiased random walk:

$$M_{unb} = \left( \text{letrec } f = \lambda x. \text{case } x \text{ of } \left\{ \mathsf{S} \to \lambda y. f(y) \oplus_{\frac{1}{2}} (f(\mathsf{S} \mathsf{S} y)) \right) \mid 0 \to 0 \right\} \right) \underline{n}$$

$$\sum \llbracket M_{bias} \rrbracket = \sum \llbracket M_{unb} \rrbracket = 1$$

Capture this in a sized type system?

Charles Grellois (AMU)

Nov 6, 2017 32 / 40

#### Another term

We also want to capture terms as:

$$M_{nat} = \left( ext{letrec } f = \lambda x. x \oplus_{rac{1}{2}} \mathsf{S} \ (f \ x) 
ight) 0$$

of semantics

$$\llbracket M_{nat} \rrbracket = \{ (0)^{\frac{1}{2}}, (S \ 0)^{\frac{1}{4}}, (S \ S \ 0)^{\frac{1}{8}}, \ldots \}$$

summing to 1.

Remark that this recursive function generates the geometric distribution.

#### Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Choice 
$$\frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \oplus_{p} N : \sigma}$$

and "unify" types of M and N by subtyping.

Kind of product interpretation of  $\oplus$ : we can't capture more than SN...

#### Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Choice 
$$\frac{\Gamma \vdash M : \sigma \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M \oplus_{p} N : \sigma}$$

and "unify" types of M and N by subtyping.

We get at best

$$f : \operatorname{\mathsf{Nat}}^{\widehat{\widehat{\mathfrak{l}}}} \to \operatorname{\mathsf{Nat}}^{\infty} \ \vdash \ \lambda y.f(y) \oplus_{\frac{1}{2}} (f(\operatorname{\mathsf{SS}} y))) \ : \ \operatorname{\mathsf{Nat}}^{\widehat{\mathfrak{l}}} \to \operatorname{\mathsf{Nat}}^{\infty}$$

and can't use a variation of the letrec rule on that.

Beyond SN terms, towards distribution types

We will use distribution types, built as follows:

Choice 
$$\frac{\Gamma | \Theta \vdash M : \mu \quad \Gamma | \Psi \vdash N : \nu \quad \{ | \mu | \} = \{ | \nu | \}}{\Gamma | \Theta \oplus_{p} \Psi \vdash M \oplus_{p} N : \mu \oplus_{p} \nu}$$

Now

$$f : \left\{ \left(\mathsf{Nat}^{i} \to \mathsf{Nat}^{\infty}\right)^{\frac{1}{2}}, \left(\mathsf{Nat}^{\widehat{\hat{i}}} \to \mathsf{Nat}^{\infty}\right)^{\frac{1}{2}} \right\}$$
$$\vdash$$
$$\lambda y.f(y) \oplus_{\frac{1}{2}} (f(\mathsf{SS}y))) : \mathsf{Nat}^{\widehat{i}} \to \mathsf{Nat}^{\infty}$$

▶ ∢ ∃

### Designing the fixpoint rule

$$f : \left\{ \left(\mathsf{Nat}^{i} \to \mathsf{Nat}^{\infty}\right)^{\frac{1}{2}}, \left(\mathsf{Nat}^{\widehat{i}} \to \mathsf{Nat}^{\infty}\right)^{\frac{1}{2}} \right\}$$
$$\vdash$$
$$\lambda y.f(y) \oplus_{\frac{1}{2}} (f(\mathsf{SS}y))) : \mathsf{Nat}^{\widehat{i}} \to \mathsf{Nat}^{\infty}$$

induces a random walk on  $\mathbb{N}$ :

on n + 1, move to n with probability <sup>1</sup>/<sub>2</sub>, on n + 2 with probability <sup>1</sup>/<sub>2</sub>,
on 0, loop.

The type system ensures that there is no recursive call from size 0.

Random walk AST (= reaches 0 with proba 1)  $\Rightarrow$  termination.

### Designing the fixpoint rule

$$\{|\Gamma|\} = \operatorname{Nat} i \notin \Gamma \text{ and } i \text{ positive in } \nu$$

$$\{ (\operatorname{Nat}^{\mathfrak{s}_j} \to \nu[i/\mathfrak{s}_j])^{P_j} \mid j \in J \} \text{ induces an AST sized walk}$$
Let Rec
$$\frac{\Gamma \mid f : \{ (\operatorname{Nat}^{\mathfrak{s}_j} \to \nu[i/\mathfrak{s}_j])^{P_j} \mid j \in J \} \vdash V : \operatorname{Nat}^{\widehat{i}} \to \nu[i/\widehat{i}]}{\Gamma \mid \emptyset \vdash \operatorname{letrec} f = V : \operatorname{Nat}^{\mathfrak{r}} \to \nu[i/\mathfrak{r}]}$$

Sized walk: AST is checked by an external PTIME procedure.

Image: A match a ma

Generalized random walks and the necessity of affinity

A crucial feature: our type system is affine.

Higher-order symbols occur at most once. Consider:

$$M_{naff} = \text{letrec } f = \lambda x.\text{case } x \text{ of } \left\{ \mathsf{S} \to \lambda y.f(y) \oplus_{\frac{2}{3}} (f(\mathsf{S} \mathsf{S} y); f(\mathsf{S} \mathsf{S} y)) \mid 0 \to 0 \right\}$$

The induced sized walk is AST.

Generalized random walks and the necessity of affinity Tree of recursive calls, starting from 1:



Leftmost edges have probability  $\frac{2}{3}$ ; rightmost ones  $\frac{1}{3}$ .

This random process is not AST.

Problem: modelisation by sized walk only makes sense for affine programs. A nice subject reduction property, and:

Theorem (Typing soundness) If  $\Gamma \mid \Theta \vdash M : \mu$ , then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

#### Conclusion

Main features of the type system:

- Affine type system with distributions of types
- Sized walks induced by the letrec rule and solved by an external PTIME procedure
- Subject reduction + soundness for AST

Next steps:

- type inference (decidable again??)
- extensions with refinement types, non-affine terms
- and use implicit complexity to give type systems for probabilistic complexity classes

#### Thank you for your attention!

#### Conclusion

Main features of the type system:

- Affine type system with distributions of types
- Sized walks induced by the letrec rule and solved by an external PTIME procedure
- Subject reduction + soundness for AST

Next steps:

- type inference (decidable again??)
- extensions with refinement types, non-affine terms
- and use implicit complexity to give type systems for probabilistic complexity classes

#### Thank you for your attention!