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Functional programs,

Higher-order models
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Imperative vs. functional programs

Imperative programs: built on finite state machines (like Turing
machines).

Notion of state, global memory.

Functional programs: built on functions that are composed together
(like in Lambda-calculus).

No state (except in impure languages), higher-order: functions can
manipulate functions.

(Turing machines and λ-terms are equivalent in expressive power)
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Example: imperative factorial

int fact(int n) {

int res = 1;

for i from 1 to n do {

res = res * i;

}

}

return res;

}

Typical way of doing: using a variable (change the state).
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Example: functional factorial

In OCaml:

let rec factorial n =

if n <= 1 then

1

else

factorial (n-1) * n;;

Typical way of doing: using a recursive function (don’t change the state).

In practice, forbidding global variables reduces considerably the number of
bugs, especially in a parallel setting (cf. Erlang).
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Advantages of functional programs

Very mathematical: calculus of functions.

. . . and thus very much studied from a mathematical point of view.
This notably leads to strong typing, a marvellous feature.

Much less error-prone: no manipulation of global state.

More and more used, from Haskell and Caml to Scala, Javascript and even
Java 8 nowadays.

Also emerging for probabilistic programming.

Price to pay: analysis of higher-order constructs.
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Advantages of functional programs

Price to pay: analysis of higher-order constructs.

Example of higher-order function: map.

map ϕ [0, 1, 2] returns [ϕ(0), ϕ(1), ϕ(2)].

Higher-order: map is a function taking a function ϕ as input.
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Probabilistic functional programs

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography, machine
learning, AI. . .

What if we add probabilistic constructs?

In this talk: M ⊕p N →v

{
Mp, N1−p }

Allows to simulate some random distributions, not all. In future work: add
fully the two roots of probabilistic programming, drawing values at random
from more probability distributions (typically on the reals), and
conditioning which allows among others to do machine learning.
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Using higher-order functions

Bending a coin in the probabilistic functional language Church:

var makeCoin = function(weight) {

return function() {

flip(weight) ? ’h’ : ’t’

}

}

var bend = function(coin) {

return function() {

(coin() == ’h’) ? makeCoin(0.7)() : makeCoin(0.1)()

}

}

var fairCoin = makeCoin(0.5)

var bentCoin = bend(fairCoin)

viz(repeat(100,bentCoin))
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Motivations

Quantitative notion of termination: almost-sure termination (AST)
which is notably required to do probabilistic inference. . .

AST has been studied for imperative programs in the last years. . .

. . . but what about the functional probabilistic languages?

Goal of the talk. Go towards verification of probabilistic functional
programs. We give an incomplete method for termination-checking.
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Roadmap

1 A few words on the λ-calculus with recursion

2 A type system for termination of probabilistic functional programs
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A few words on the λ-calculus

Definition, simply-typed fragment, recursion, natural numbers
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λ-terms

Grammar:

M, N ::= x
∣∣ λx .M ∣∣ M N

Calculus of functions:

x is a variable,

λx .M is intuitively a function x 7→ M,

M N is the application of functions.
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λ-terms

Grammar:

M, N ::= x
∣∣ λx .M ∣∣ M N

Examples:

λx .x : identity x 7→ x ,

λx .y : constant function x 7→ y ,

(λx .x) y : application of the identity to y ,

∆ = λx .x x : duplication.
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β-reduction

(λx .x) y

is an application of functions which should compute y :

(λx .x) y →β y

Beta-reduction gives the dynamics of the calculus.
(= the evaluation of the functions/programs).

This calculus is equivalent in expressive power, for functions N→ N, to
Turing machines.
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β-reduction

Formally:

(λx .M) N →β M[x/N]

Examples:

(λx .y) z →β y
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β-reduction

Formally:

(λx .M) N →β M[x/N]

Examples:

(λf .λx .f (f x)) (g g) y

→β (λx .g (g (g (g x)))) y

→β g (g (g (g y)))
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The looping term Ω

Just like with Turing machines, there are computations that never stop.

Set Ω = ∆ ∆ = (λx .x x)(λx .x x).

Then:

Ω = (λx .x x)(λx .x x)

→β (x x) [x/λx .x x ] = Ω

→β Ω

→β . . .
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The looping term Ω

Just like with Turing machines, there are computations that never stop.
But that may depend on how we compute.

(λx .y) Ω →β y

if we reduce the first redex, or

(λx .y) Ω →β (λx .y) Ω

if we try to reduce the second (inside Ω). . .

Weak normalization: at least one way of computing terminates

Strong normalization (SN): all ways of computing terminate.
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Simple types and strong normalization

Problem with Ω: it contains x x .
So x is at the same time a function and an argument of this function.

Simple types forbid this: you have to be a function A→ A or an argument
of type A, but not both.

It is enough to guarantee strong normalization:

M has a simple type ⇒ M is SN.

It’s an incomplete characterization: ∆ = λx .x x is SN (no way to reduce
it!) but not typable.
(simple typing is decidable, so it couldn’t be complete).
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Simple types

Simple types: σ, τ ::= o
∣∣ σ → τ .

Γ, x : σ ` x : σ
Γ, x : σ ` M : τ

Γ ` λx .M : σ → τ

Γ ` M : σ → τ Γ ` N : σ
Γ ` M N : τ
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Recursion
We can add recursion with a new construct:

M, N ::= · · ·
∣∣ letrec f = M

a new rewrite rule:

letrec f = M → M[f /letrec f = M]

and a new typing rule:

Γ, f : σ → τ ` M : σ → τ

Γ ` letrec f = M : σ → τ

which does not guarantee SN: letrec f = f is typable and loops forever.
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Natural numbers
A way to add natural numbers: add them as constructors built inductively,
together with a destructor (pattern-matching).

M, N ::= · · ·
∣∣ 0

∣∣ S M
∣∣ case M of

{
S→ N

∣∣ 0→ L
}

Reductions:

case S M of
{

S→ N
∣∣ 0→ L

}
→ N M

case 0 of
{

S→ N
∣∣ 0→ L

}
→ L

Note: all we do in this talk can be done with inductive types (lists,
trees. . . )
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Natural numbers

A way to add natural numbers: add them as constructors built inductively,
together with a destructor (pattern-matching).

M, N ::= · · ·
∣∣ 0

∣∣ S M
∣∣ case M of

{
S→ N

∣∣ 0→ L
}

Typing:

Γ ` 0 : Nat
Γ ` M : Nat

Γ ` S M : Nat

Γ ` M : Nat Γ ` N : Nat→ σ Γ ` L : σ
Γ ` case M of

{
S→ N

∣∣ 0→ L
}

: σ

where we consider o = Nat.
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Sized Types and Termination

A sound termination check for the deterministic case
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Sized types: the deterministic case

Sized types: a decidable extension of the simple type system ensuring SN
for λ-terms with letrec.

Fundamental idea of typing: types describe properties of programs.
In sized types: properties linked with termination properties.

See notably:

Hughes-Pareto-Sabry 1996, Proving the correctness of reactive
systems using sized types,

Barthe-Frade-Giménez-Pinto-Uustalu 2004, Type-based termination
of recursive definitions.
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Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Idea: k successors = at most k constructors.

Nat̂i is 0,

Nat̂̂i is 0 or S 0,

. . .

Nat∞ is any natural number. Often denoted simply Nat.

The same for lists,. . .
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Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

“To define the action of f on size n + 1,
we only call recursively f on size at most n”
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Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

Typable =⇒ SN. Proof using reducibility candidates.

Decidable type inference: no completeness, but of practical use.
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Sized types: example in the deterministic case

From Barthe et al. (op. cit.):

The case rule ensures that the size of x ′ is lesser than the one of x .
Size decreases during recursive calls ⇒ SN.
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Probabilistic Termination
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A probabilistic λ-calculus

M, N, . . . ::= V
∣∣ V V

∣∣ let x = M in N
∣∣ M ⊕p N∣∣ case V of { S→W | 0→ Z }

V , W , Z , . . . ::= x
∣∣ 0

∣∣ S V
∣∣ λx .M ∣∣ letrec f = V

Formulation equivalent to λ-calculus with ⊕p, but constrained for
technical reasons (A-normal form)

Restriction to base type Nat for simplicity, but can be extended to
general inductive datatypes (as in sized types)
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A probabilistic λ-calculus: operational semantics

let x = V in M →v

{
(M[x/V ])1

}

(λx .M) V →v

{
(M[x/V ])1

}

(letrec f = V )
(
c
−→
W
)
→v

{(
V [f / (letrec f = V )]

(
c
−→
W
))1

}
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A probabilistic λ-calculus: operational semantics

case S V of {S→W | 0→ Z } →v

{
(W V )1

}

case 0 of { S→W | 0→ Z } →v

{
(Z )1

}
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A probabilistic λ-calculus: operational semantics

M ⊕p N →v

{
Mp, N1−p }

M →v

{
Lpii

∣∣ i ∈ I
}

let x = M in N →v

{
(let x = Li in N)pi

∣∣ i ∈ I
}

Charles Grellois (AMU) Termination of probabilistic programs Nov 6, 2017 30 / 40



A probabilistic λ-calculus: operational semantics

D
VD
=

{
M

pj
j

∣∣ j ∈ J
}

+ DV ∀j ∈ J, Mj →v Ej

D →v

(∑
j∈J pj · Ej

)
+ DV

For D a distribution of terms:

[[ D ]] = supn∈N
({

Dn

∣∣ D Vn
v Dn

})
where Vn

v is →n
v followed by projection on values.

We let [[M ]] = [[
{
M1
}

]].

M is AST iff
∑

[[M ]] = 1.
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Random walks as probabilistic terms

Biased random walk:

Mbias =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y)))
∣∣ 0→ 0

})
n
¯

Unbiased random walk:

Munb =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

})
n
¯

∑
[[Mbias ]] =

∑
[[Munb ]] = 1

Capture this in a sized type system?
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Another term

We also want to capture terms as:

Mnat =
(

letrec f = λx .x ⊕ 1
2

S (f x)
)

0

of semantics

[[Mnat ]] =
{

(0)
1
2 , (S 0)

1
4 , (S S 0)

1
8 , . . .

}
summing to 1.

Remark that this recursive function generates the geometric distribution.
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Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

Kind of product interpretation of ⊕: we can’t capture more than SN. . .
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Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

We get at best

f : Nat̂̂i → Nat∞ ` λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

and can’t use a variation of the letrec rule on that.
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Beyond SN terms, towards distribution types

We will use distribution types, built as follows:

Γ |Θ ` M : µ Γ |Ψ ` N : ν {|µ |} = {| ν |}
Choice

Γ |Θ⊕p Ψ ` M ⊕p N : µ⊕p ν

Now

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞
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Designing the fixpoint rule

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

induces a random walk on N:

on n + 1, move to n with probability 1
2 , on n + 2 with probability 1

2 ,

on 0, loop.

The type system ensures that there is no recursive call from size 0.

Random walk AST (= reaches 0 with proba 1) ⇒ termination.
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Designing the fixpoint rule

{| Γ |} = Nat

i /∈ Γ and i positive in ν{
(Natsj → ν[i/sj ])

pj
∣∣ j ∈ J

}
induces an AST sized walk

Γ | f :
{

(Natsj → ν[i/sj ])
pj
∣∣ j ∈ J

}
` V : Nat̂i → ν[i/̂i]

LetRec
Γ | ∅ ` letrec f = V : Natr → ν[i/r]

Sized walk: AST is checked by an external PTIME procedure.
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Generalized random walks and the necessity of affinity

A crucial feature: our type system is affine.

Higher-order symbols occur at most once. Consider:

Mnaff = letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y) ; f (S S y))
∣∣ 0→ 0

}

The induced sized walk is AST.
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Generalized random walks and the necessity of affinity
Tree of recursive calls, starting from 1:

[1]

[2 2]

[2 3 3]

...

[2 1]

[2 2 2]

...

[2]

[3 3]

...

[1]

[2 2]

...

[0]

[0]

Leftmost edges have
probability 2

3 ;
rightmost ones 1

3 .

This random process
is not AST.

Problem:
modelisation by sized
walk only makes
sense for affine
programs.
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Key properties

A nice subject reduction property, and:

Theorem (Typing soundness)

If Γ |Θ ` M : µ, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.
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Conclusion
Main features of the type system:

Affine type system with distributions of types

Sized walks induced by the letrec rule and solved by an external
PTIME procedure

Subject reduction + soundness for AST

Next steps:

type inference (decidable again??)

extensions with refinement types, non-affine terms

and use implicit complexity to give type systems for probabilistic
complexity classes

Thank you for your attention!
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