
A semantic study
of higher-order model-checking

Charles Grellois Paul-André Melliès

PPS & LIAFA — Université Paris 7
University of Dundee

Journées Nationales GEOCAL-LAC-LTP 2015
October 14th, 2015

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 1 / 26

Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program

Specify a property ϕ in an appropriate logic

Make them interact: the result is whether

M � ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ 7→ Aϕ

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 2 / 26

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 3 / 26

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

...data

data

Nil

data

Nil

Nil

How to represent this tree finitely?

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 3 / 26

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) Aϕ

corresponding to a

monadic second-order logic (MSO) formula ϕ.

(safety, liveness properties, etc)

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 3 / 26

Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) Aϕ

corresponding to a

monadic second-order logic (MSO) formula ϕ.

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 3 / 26

Higher-order recursion schemes

Some regularity for infinite trees

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 4 / 26

Higher-order recursion schemes

Main = Listen Nil

Listen x = if end then x else Listen (data x)

is abstracted as

G =

{
S = L Nil

L x = if x (L (data x))

which produces (how ?) the higher-order tree of actions

if

if
...data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 5 / 26

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Rewriting starts from the start symbol S:

S →G
L

Nil

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 6 / 26

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 6 / 26

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 6 / 26

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 6 / 26

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

“Everything” is simply-typed, and

well-typed programs can’t go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol Ω in one step).

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 6 / 26

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

“Everything” is simply-typed, and

well-typed programs can’t go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol Ω in one step).

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 6 / 26

Higher-order recursion schemes

We can adapt to HORS the fact that coinductive parallel head reduction
computes the normal form of infinite λ-terms:

(λx . s) t →Gw s[x ← t]
s →Gw s ′

s t →Gw s ′ t

F →Gw R(F)

t →∗Gw a t1 · · · tn ti →∞G t ′i (∀i)

t →∞G a t ′1 · · · t ′n

This reduction computes 〈G〉 whenever it exists (a decidable question).

This presentation allows coinductive reasoning on rewriting.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 7 / 26

Alternating tree automata

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 8 / 26

Alternating parity tree automata

For a MSO formula ϕ,

〈G〉 � ϕ

iff an equivalent APT Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA)︸ ︷︷ ︸
weak MSO

+ parity condition

︸ ︷︷ ︸
MSO

.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 9 / 26

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 10 / 26

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 10 / 26

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

This infinite process produces a run-tree of Aϕ over 〈G〉.

It is an infinite, unranked tree.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 10 / 26

ATA vs. HORS

(λx . s) t →Gw s[x ← t]
s →Gw s ′

s t →Gw s ′ t

F →Gw R(F)

t →∗Gw a t1 · · · tn ti : qij →∞G,A t ′i : qij

t : q →∞G,A (a (t ′11 : (1, q11)) · · · (t ′nkn : (n, qnkn))) : q

where the duplication “conforms to δ” (there is non-determinism).

Starting from S : q0, this computes run-trees of an ATA A over 〈G〉.

We get closer to type theory. . .

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 11 / 26

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ → (q0 ∧ q1)→ q0

refining the simple typing

if : o → o → o

(this talk is NOT about filter models!)

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 12 / 26

Alternating tree automata and intersection types

In a derivation typing if T1 T2 :

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
Γ21 ` T2 : q0

...
Γ22 ` T2 : q1

App
Γ21, Γ22 ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi)

S : q0 ` S : q0 iff the ATA Aϕ has a run-tree over 〈G〉.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 13 / 26

A type-system for verification: without parity conditions

Axiom
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn

j=1 qnj → q :: o → · · · → o

∆ ` t : (θ1 ∧ · · · ∧ θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ + ∆1 + . . . + ∆k ` t u : θ :: κ′

∆ , x :
∧

i∈I θi :: κ ` t : θ :: κ′

λ
∆ ` λ x . t :

(∧
i∈I θi

)
→ θ :: κ→ κ′

Γ ` R(F) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 14 / 26

An alternate proof

Theorem

S : q0 ` S : q0 iff the ATA Aφ has a run-tree over 〈G〉.

Proof: coinductive subject reduction/expansion + head reduction of
derivations with non-idempotent intersection types.

π
...

S : q0 ` S : q0

←→
π′

...
∅ ` 〈G〉 : q0

⇐⇒
〈G〉 is
accepted
by A.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 15 / 26

Parity conditions

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 16 / 26

Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 17 / 26

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 18 / 26

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � φ

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 18 / 26

One more word on proof rewriting

S : q0 ` S : q0

...
...

π0

π1 π2

→∞

∅ ` 〈G〉 : q0

...
...

C0

C1 C2

where the Ci are the tree contexts obtained by normalizing each πi .

C0[C1[],C2[]] is a prefix of a run-tree of A over 〈G〉.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 19 / 26

One more word on proof rewriting

S : q0 ` S : q0

...
...

π0

π1 π2

→∞

∅ ` 〈G〉 : q0

...
...

C0

C1 C2

Theorem

In this quantitative setting, there is a correspondence between infinite
branches of the typing of G and of the run-tree over 〈G〉 obtained by
normalization.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 20 / 26

One more word on proof rewriting

S : q0 ` S : q0

...
...

π0

π1 π2

→∞

∅ ` 〈G〉 : q0

...
...

C0

C1 C2

The goal now: add information in πi about the maximal color seen in Ci .

One extra color: ε for the case Ci = [].

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 20 / 26

Alternating parity tree automata

We add coloring informations to intersection types:

δ(q0, if) = (2, q0) ∧ (2, q1)

now corresponds to

if : ∅ →
(
�Ω(q0) q0 ∧�Ω(q1) q1

)
→ q0

Application computes the “local” maximum of colors, and the fixpoint
deals with the acceptance condition.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 21 / 26

A type-system for verification (Grellois-Melliès 2014)

∆ ` t : (�c1 θ1 ∧ · · · ∧�ck θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ + �c1 ∆1 + . . . + �ck ∆k ` t u : θ :: κ′

Subject reduction: the contraction of a redex

c1
c2

c ′i

π0
πi

∆, x : �c1 θ1 ∧ · · · ∧�ck θk ` t : θ

∆ ` λx . t : (�c1 θ1 ∧ · · · ∧�ck θk)→ θ ∆i ` u : θi

∆ + �c1∆1 + . . . + �ck ∆k ` (λx . t) u : θ

x : �ε θ1 ` x : θ1 x : �ε θ2 ` x : θ2

y : �ε σi ` y : σi

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 22 / 26

A type-system for verification (Grellois-Melliès 2014)

∆ ` t : (�c1 θ1 ∧ · · · ∧�ck θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ + �c1 ∆1 + . . . + �ck ∆k ` t u : θ :: κ′

gives a proof of the same sequent:

c1
c2

c ′i c ′i

π0

πi πi

∆ + �c1∆1 + . . . + �ck ∆k ` t[x ← u] : θ

y : �ε σi ` y : σi y : �ε σi ` y : σi

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 22 / 26

A type-system for verification (Grellois-Melliès 2014)

We rephrase the parity condition to typing trees, and now capture all MSO:

Theorem (G.-Melliès 2014)

S : q0 ` S : q0 admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over 〈G〉.

We obtain decidability by collapsing to idempotent types.

Non-idempotency is very helpful for proofs, but leads to infinitary
constructions.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 23 / 26

It was linear logic all the way!

Linear logic very naturally handles alternation via

A⇒ B = ! A(B

and we can extend it with a coloring modality �.

New colored, infinitary semantics:

 A = Mcount(Col × A)

Quantitative colored intersection types ⇔ elements of this colored,
infinitary relational semantics.

Typing derivations ⇔ computation of denotations.

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 24 / 26

It was linear logic all the way!

We obtain two kind of semantics:

a quantitative, infinitary semantics, corresponding to non-idempotent
colored types,

and a qualitative, finitary one, which is decidable (colored extension
of the Scott model of linear logic, with a parity fixpoint).

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 25 / 26

Conclusion

Sort of static analysis of infinitary properties.

We lift to higher-order the behavior of APT.

Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.

Thank you for your attention!

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 26 / 26

Conclusion

Sort of static analysis of infinitary properties.

We lift to higher-order the behavior of APT.

Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.

Thank you for your attention!

Charles Grellois (PPS - LIAFA - Dundee) A semantic study of model-checking Oct 14, 2015 26 / 26

