
Probabilistic Termination
by Monadic Affine Sized Typing

Ugo dal Lago Charles Grellois

FOCUS Team – INRIA & University of Bologna

Journées Geocal-LAC
Nov 28, 2016

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 1 / 21

Motivations

Probabilistic programming languages are more and more pervasive in
computer science: modeling uncertainty, robotics, cryptography,
machine learning, AI. . .

Quantitative notion of termination: almost-sure termination (AST)

AST has been studied for imperative programs in the last years. . .

. . . but what about the functional probabilistic languages?

We introduce a monadic, affine sized type system sound for AST.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 2 / 21

Sized types: the deterministic case

Simply-typed λ-calculus is strongly normalizing (SN).

No longer true with the letrec construction. . .

Sized types: a decidable extension of the simple type system ensuring SN
for λ-terms with letrec.

See notably:

Hughes-Pareto-Sabry 1996, Proving the correctness of reactive
systems using sized types,

Barthe-Frade-Giménez-Pinto-Uustalu 2004, Type-based termination
of recursive definitions.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 3 / 21

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Idea: k successors = at most k constructors.

Nat̂i is 0,

Nat̂̂i is 0 or S 0,

. . .

Nat∞ is any natural number. Often denoted simply Nat.

The same for lists,. . .

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 4 / 21

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

“To define the action of f on size n + 1,
we only call recursively f on size at most n”

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 4 / 21

Sized types: the deterministic case

Sizes: s, r ::= i
∣∣ ∞ ∣∣ ŝ

+ size comparison underlying subtyping. Notably ∞̂ ≡ ∞.

Fixpoint rule:

Γ, f : Nati → σ ` M : Nat̂i → σ[i/̂i] i pos σ

Γ ` letrec f = M : Nats → σ[i/s]

Typable =⇒ SN. Proof using reducibility candidates.

Decidable type inference.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 4 / 21

Sized types: example in the deterministic case

From Barthe et al. (op. cit.):

The case rule ensures that the size of x ′ is lesser than the one of x .
Size decreases during recursive calls ⇒ SN.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 5 / 21

A probabilistic λ-calculus

M, N, . . . ::= V
∣∣ V V

∣∣ let x = M in N
∣∣ M ⊕p N∣∣ case V of { S→W | 0→ Z }

V , W , Z , . . . ::= x
∣∣ 0

∣∣ S V
∣∣ λx .M ∣∣ letrec f = V

Formulation equivalent to λ-calculus with ⊕p, but constrained for
technical reasons (A-normal form)

Restriction to base type Nat for simplicity, but can be extended to
general inductive datatypes (as in sized types)

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 6 / 21

A probabilistic λ-calculus: operational semantics

let x = V in M →v

{
(M[x/V])1

}

(λx .M) V →v

{
(M[x/V])1

}

(letrec f = V)
(
c
−→
W
)
→v

{(
V [f / (letrec f = V)]

(
c
−→
W
))1

}

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 7 / 21

A probabilistic λ-calculus: operational semantics

case S V of {S→W | 0→ Z } →v

{
(W V)1

}

case 0 of { S→W | 0→ Z } →v

{
(Z)1

}

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 8 / 21

A probabilistic λ-calculus: operational semantics

M ⊕p N →v

{
Mp, N1−p }

M →v

{
Lpii

∣∣ i ∈ I
}

let x = M in N →v

{
(let x = Li in N)pi

∣∣ i ∈ I
}

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 9 / 21

A probabilistic λ-calculus: operational semantics

D
VD
=

{
M

pj
j

∣∣ j ∈ J
}

+ DV ∀j ∈ J, Mj →v Ej

D →v

(∑
j∈J pj · Ej

)
+ DV

For D a distribution of terms:

[[D]] = supn∈N
({

Dn

∣∣ D Vn
v Dn

})
where Vn

v is →n
v followed by projection on values.

We let [[M]] = [[
{
M1
}

]].

M is AST iff
∑

[[M]] = 1.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 10 / 21

Random walks as probabilistic terms

Biased random walk:

Mbias =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y)))
∣∣ 0→ 0

})
n
¯

Unbiased random walk:

Munb =
(

letrec f = λx .case x of
{

S→ λy .f (y)⊕ 1
2

(f (S S y)))
∣∣ 0→ 0

})
n
¯

∑
[[Mbias]] =

∑
[[Munb]] = 1

Capture this in a sized type system?

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 11 / 21

Another term

We also want to capture terms as:

Mnat =
(

letrec f = λx .x ⊕ 1
2

S (f x)
)

0

of semantics

[[Mnat]] =
{

(0)
1
2 , (S 0)

1
4 , (S S 0)

1
8 , . . .

}
summing to 1.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 12 / 21

Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

Kind of product interpretation of ⊕: we can’t capture more than SN. . .

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 13 / 21

Beyond SN terms, towards distribution types

First idea: extend the sized type system with:

Γ ` M : σ Γ ` N : σ
Choice

Γ ` M ⊕p N : σ

and “unify” types of M and N by subtyping.

We get at best

f : Nat̂̂i → Nat∞ ` λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

and can’t use a variation of the letrec rule on that.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 13 / 21

Beyond SN terms, towards distribution types

We will use distribution types, built as follows:

Γ |Θ ` M : µ Γ |Ψ ` N : ν {|µ |} = {| ν |}
Choice

Γ |Θ⊕p Ψ ` M ⊕p N : µ⊕p ν

Now

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 14 / 21

Designing the fixpoint rule

f :

{(
Nati → Nat∞

) 1
2 ,

(
Nat̂̂i → Nat∞

) 1
2

}
`

λy .f (y)⊕ 1
2

(f (S S y))) : Nat̂i → Nat∞

induces a random walk on N:

on n + 1, move to n with probability 1
2 , on n + 2 with probability 1

2 ,

on 0, loop.

The type system ensures that there is no recursive call from size 0.

Random walk AST (= reaches 0 with proba 1) ⇒ termination.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 15 / 21

Designing the fixpoint rule

{| Γ |} = Nat

i /∈ Γ and i positive in ν{
(Natsj → ν[i/sj])

pj
∣∣ j ∈ J

}
induces an AST sized walk

Γ | f :
{

(Natsj → ν[i/sj])
pj
∣∣ j ∈ J

}
` V : Nat̂i → ν[i/̂i]

LetRec
Γ | ∅ ` letrec f = V : Natr → ν[i/r]

Sized walk: AST is checked by an external PTIME procedure.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 15 / 21

Generalized random walks and the necessity of affinity

A crucial feature: our type system is affine.

Higher-order symbols occur at most once. Consider:

Mnaff = letrec f = λx .case x of
{

S→ λy .f (y)⊕ 2
3

(f (S S y) ; f (S S y))
∣∣ 0→ 0

}

The induced sized walk is AST.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 16 / 21

Generalized random walks and the necessity of affinity
Tree of recursive calls, starting from 1:

[1]

[2 2]

[2 3 3]

...

[2 1]

[2 2 2]

...

[2]

[3 3]

...

[1]

[2 2]

...

[0]

[0]

Leftmost edges have
probability 2

3 ;
rightmost ones 1

3 .

This random process
is not AST.

Problem:
modelisation by sized
walk only makes
sense for affine
programs.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 17 / 21

Key property I: subject reduction

Main idea: reduction of

∅ | ∅ ` 0⊕ 0 :

{(
Natŝ

) 1
2
,
(

Nat̂̂r
) 1

2

}
is to {(

0 : Natŝ
) 1

2
,
(

0 : Nat̂̂r
) 1

2

}

1 Same expectation type: 1
2 · Natŝ + 1

2 · Nat̂̂r

2 Splitting of [[0⊕ 0]] in a typed representation → notion of
pseudo-representation

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 18 / 21

Key property I: subject reduction

Theorem

Let M ∈ Λ⊕ be such that ∅ | ∅ ` M : µ. Then there exists a closed typed

distribution
{

(Wj : σj)
p′j
∣∣ j ∈ J

}
such that

E
(

(Wj : σj)
p′j
)

4 µ,

and that
[

(Wj)
p′j
∣∣ j ∈ J

]
is a pseudo-representation of [[M]].

By the soundness theorem of next slide, this inequality is in fact an
equality.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 19 / 21

Key properties

Theorem (Typing soundness)

If Γ |Θ ` M : µ, then M is AST.

Proof by reducibility, using set of candidates parametrized by probabilities.

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 20 / 21

Conclusion

Main features of the type system:

Affine type system with distributions of types

Sized walks induced by the letrec rule and solved by an external
PTIME procedure

Subject reduction + soundness for AST

Next steps:

type inference (decidable again??)

extensions with refinement types, non-affine terms

Thank you for your attention!

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 21 / 21

Conclusion

Main features of the type system:

Affine type system with distributions of types

Sized walks induced by the letrec rule and solved by an external
PTIME procedure

Subject reduction + soundness for AST

Next steps:

type inference (decidable again??)

extensions with refinement types, non-affine terms

Thank you for your attention!

dal Lago & Grellois (INRIA & U. Bologna) Monadic Affine Sized Typing Nov 28, 2016 21 / 21

