
Introduction to higher-order verification II
Modal µ-calculus, tree automata and parity games

Charles Grellois

PPS & LIAFA — Université Paris 7

GdT Sémantique et Vérification – December 11th, 2014

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 1 / 83

Models for higher-order programs

Last time we introduced recursion schemes and lambda Y-calculus, two
models for higher-order programs.

These models capture the higher-order flow of program with recursion, but
abstracts conditionals, arithmetics, references. . .

We start by a quick reminder of them.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 2 / 83

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

S

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 3 / 83

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

S =⇒
L

Nil

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 4 / 83

Value tree of a recursion scheme

S = L Nil

L x = if x (L (data x)
generates:

L

Nil

=⇒

if

L

data

Nil

Nil

Notice that substitution and expansion occur in one same step.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 5 / 83

Value tree of a recursion scheme
S = L Nil

L x = if x (L (data x)
generates:

if

L

data

Nil

Nil

=⇒

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 6 / 83

Value tree of a recursion scheme

if

if

if

...data

data

Nil

data

Nil

Nil

Important remark: this scheme is very simple, yet it produces a tree which
is not regular (it does not have a finite number of subtrees).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 7 / 83

Value tree of a recursion scheme

if

if

if

...data

data

Nil

data

Nil

Nil

Important remark: this scheme is very simple, yet it produces a tree which
is not regular (it does not have a finite number of subtrees).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 7 / 83

Value tree of a recursion scheme

if

if

if

...data

data

Nil

data

Nil

Nil

Examples of properties to check:

the program may run infinitely if needed (liveness property)

the program’s outputs are finite
Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 8 / 83

Value tree of a recursion scheme

S = M Nil

M x = if (commit x) (A x M)
A y φ = if (φ (error end)) (φ (cons y))

M

Nil

=⇒

if

A

MNil

commit

Nil

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 9 / 83

Value tree of a recursion scheme
S = M Nil

M x = if (commit x) (A x M)
A y φ = if (φ (error end)) (φ (cons y))

if

A

MNil

commit

Nil

=⇒

if

if

M

cons

Nil

M

error

end

commit

Nil

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 10 / 83

Value tree of a recursion scheme
S = M Nil

M x = if (commit x) (A x M)
A y φ = if (φ (error end)) (φ (cons y))

if

if

M

cons

Nil

M

error

end

commit

Nil =⇒

if

if

M

cons

Nil

if

A

Merror

end

commit

error

end

commit

Nil

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 11 / 83

Value tree of a recursion scheme

if

if

M

cons

Nil

M

error

end

commit

Nil =⇒

if

if

M

cons

Nil

if

A

Merror

end

commit

error

end

commit

Nil

Example of property to check: the program never commits an error (safety
property).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 12 / 83

Trees: ranked vs unranked

A reminder from last week:

A Σ-labelled (ranked) tree is defined as a function t : Dom(t)→ Σ with
Dom(t) ⊆ N∗ a prefix-closed set of finite words on natural numbers,
satisfying the following property:

∀α ∈ Dom(t), {i | α · i ∈ Dom(t)} = {1, . . . , ar(t(α))}

When this last condition is relaxed, the tree is called unranked.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 13 / 83

Trees: ranked vs unranked

A reminder from last week:

A Σ-labelled (ranked) tree is defined as a function t : Dom(t)→ Σ with
Dom(t) ⊆ N∗ a prefix-closed set of finite words on natural numbers,
satisfying the following property:

∀α ∈ Dom(t), {i | α · i ∈ Dom(t)} = {1, . . . , ar(t(α))}

When this last condition is relaxed, the tree is called unranked.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 13 / 83

Trees: ranked vs unranked

A reminder from last week:

A Σ-labelled (ranked) tree is defined as a function t : Dom(t)→ Σ with
Dom(t) ⊆ N∗ a prefix-closed set of finite words on natural numbers,
satisfying the following property:

∀α ∈ Dom(t), {i | α · i ∈ Dom(t)} = {1, . . . , ar(t(α))}

When this last condition is relaxed, the tree is called unranked.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 13 / 83

Trees: ranked vs unranked

The main difference between ranked and unranked trees is that ranked
trees have a maximal arity, while unranked ones do not.

In other terms, in an unranked tree, there is no boundary on the number
of directions we could take from a node.

So distinguishing directions would require a countable number of
predicates.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 14 / 83

MSO

The logic on which all the work on higher-order model-checking relies is
the monadic second order logic.

It has the advantage of containing other standard temporal logics (CTL,
LTL. . .), and to be close to the fronteer of decidability, in the sense that
in situations where it is decidable, most of its extensions fail to be.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 15 / 83

MSO

MSO extends first-order logic with quantification over monadic relations
(in other terms: over sets).

We will not present this logic in this talk, but modal µ-calculus instead,
since it is equi-expressive over trees (Janin-Walukiewicz 1996).

Moreover, modal µ-calculus is in a sense more algorithmic than MSO, and
as such much closer to automata theory.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 16 / 83

Modal µ-calculus

We fix a finite ranked alphabet Σ.

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

X is a variable

a is a predicate corresponding to a symbol of Σ

�φ means that φ should hold on every successor of the current node

�i φ means that φ should hold on one successor of the current node (the
one in direction i)

We can also define (variant) � =
∨

i �i .

Note that for an unranked structure, only � would make sense.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 17 / 83

Modal µ-calculus

We fix a finite ranked alphabet Σ.

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

X is a variable

a is a predicate corresponding to a symbol of Σ

�φ means that φ should hold on every successor of the current node

�i φ means that φ should hold on one successor of the current node (the
one in direction i)

We can also define (variant) � =
∨

i �i .

Note that for an unranked structure, only � would make sense.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 17 / 83

Modal µ-calculus

We fix a finite ranked alphabet Σ.

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

X is a variable

a is a predicate corresponding to a symbol of Σ

�φ means that φ should hold on every successor of the current node

�i φ means that φ should hold on one successor of the current node (the
one in direction i)

We can also define (variant) � =
∨

i �i .

Note that for an unranked structure, only � would make sense.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 17 / 83

Modal µ-calculus

We fix a finite ranked alphabet Σ.

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

X is a variable

a is a predicate corresponding to a symbol of Σ

�φ means that φ should hold on every successor of the current node

�i φ means that φ should hold on one successor of the current node (the
one in direction i)

We can also define (variant) � =
∨

i �i .

Note that for an unranked structure, only � would make sense.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 17 / 83

Modal µ-calculus

We fix a finite ranked alphabet Σ.

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

µX . φ is the least fixpoint of φ(X). It is computed by expanding finitely
the formula:

µX . φ(X) −→ φ(µX . φ(X)) −→ φ(φ(µX . φ(X)))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 18 / 83

Modal µ-calculus

We fix a finite ranked alphabet Σ.

Grammar: φ, ψ ::= X | a | φ ∨ ψ | φ ∧ ψ | �φ | �i φ | µX . φ | νX . φ

νX . φ is the greatest fixpoint of φ(X). It is computed by expanding
infinitely the formula:

νX . φ(X) −→ φ(νX . φ(X)) −→ φ(φ(νX . φ(X)))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 19 / 83

Modal µ-calculus

One can also define negation using usual de Morgan duality. There are
just two points to notice:

¬ a =
∨

b∈Σ\{a} b

and µX . and νX . are only allowed on formulas in which X only
occurs positively.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 20 / 83

Value tree of a recursion scheme

if

if

M

cons

Nil

M

error

end

commit

Nil =⇒

if

if

M

cons

Nil

if

A

Merror

end

commit

error

end

commit

Nil

Example of property to check: the program never commits an error (safety
property).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 21 / 83

Specifying a property in modal µ-calculus

How do we specify that the second scheme does not commit an error ?
We want to forbid the existence of an instance of the symbol error on a
branch after commit was seen.

There is a branch with an error in a tree ⇐⇒ µX . (�X ∨ error)

There is a branch containing an error in a tree whose root is labelled with
a commit
⇐⇒ commit ∧ (µX . (�X ∨ error))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 22 / 83

Specifying a property in modal µ-calculus

How do we specify that the second scheme does not commit an error ?
We want to forbid the existence of an instance of the symbol error on a
branch after commit was seen.

There is a branch with an error in a tree ⇐⇒ µX . (�X ∨ error)

There is a branch containing an error in a tree whose root is labelled with
a commit
⇐⇒ commit ∧ (µX . (�X ∨ error))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 22 / 83

Specifying a property in modal µ-calculus

There is a branch containing an error in a tree whose root is labelled with
a commit
⇐⇒ commit ∧ (µX . (�X ∨ error))

There is a branch with an error after a commit
⇐⇒ µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Recall this is a safety property — notice we only used the µ quantifier.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 23 / 83

Specifying a property in modal µ-calculus

There is a branch containing an error in a tree whose root is labelled with
a commit
⇐⇒ commit ∧ (µX . (�X ∨ error))

There is a branch with an error after a commit
⇐⇒ µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Recall this is a safety property — notice we only used the µ quantifier.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 23 / 83

Value tree of a recursion scheme

if φ

if

M

cons

Nil

if

A

Merror

end

commit

error

end

commit

Nil

φ = µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 24 / 83

Value tree of a recursion scheme

if �φ ∨ (commit ∧ (µX . (�X ∨ error)))

if

M

cons

Nil

if

A

Merror

end

commit

error

end

commit

Nil

φ = µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 25 / 83

Value tree of a recursion scheme

if �φ

if

M

cons

Nil

if

A

Merror

end

commit

error

end

commit

Nil

φ = µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 26 / 83

Value tree of a recursion scheme

if

if φ

M

cons

Nil

if

A

Merror

end

commit

error

end

commit

Nil

φ = µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 27 / 83

Value tree of a recursion scheme

if

if �φ ∨ (commit ∧ (µX . (�X ∨ error)))

M

cons

Nil

if

A

Merror

end

commit

error

end

commit

Nil

φ = µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 28 / 83

Value tree of a recursion scheme

if

if �φ

M

cons

Nil

if

A

Merror

end

commit

error

end

commit

Nil

φ = µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 29 / 83

Value tree of a recursion scheme

if

if

M

cons

Nil

if φ

A

Merror

end

commit

error

end

commit

Nil

φ = µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 30 / 83

Value tree of a recursion scheme

if

if

M

cons

Nil

if �φ

A

Merror

end

commit

error

end

commit

Nil

φ = µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 31 / 83

Value tree of a recursion scheme

if

if

M

cons

Nil

if

A

Merror

end

µX . (�X ∨ error) commit

error

end

commit

Nil

φ = µY . (�Y ∨ (commit ∧ (µX . (�X ∨ error))))

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 32 / 83

Value tree of a recursion scheme

if

if

M

cons

Nil

if

A

Merror

end

�ψ ∨ error commit

error

end

commit

Nil

ψ = µX . (�X ∨ error)

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 33 / 83

Value tree of a recursion scheme

if

if

M

cons

Nil

if

A

Merror

end

�ψ commit

error

end

commit

Nil

ψ = µX . (�X ∨ error)

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 34 / 83

Value tree of a recursion scheme

if

if

M

cons

Nil

if

A

Merror

end

commit

ψ error

end

commit

Nil

ψ = µX . (�X ∨ error)

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 35 / 83

Value tree of a recursion scheme

if

if

M

cons

Nil

if

A

Merror

end

commit

�ψ ∨ error error

end

commit

Nil

ψ = µX . (�X ∨ error)

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 36 / 83

Value tree of a recursion scheme

if

if

M

cons

Nil

if

A

Merror

end

commit

> error

end

commit

Nil

so that the formula holds at the root. How can we make this more formal ?

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 37 / 83

Modal µ-calculus : semantics

Consider a Σ-labelled ranked tree t. Denote N the set of its nodes, and fix
a valuation V : Var → P(N).

Then the semantics of a closed formula is a subset of N, to be understood
as the set of nodes over which the formula is true (that is, from which it
can be unravelled consistently with the µ/ν restrictions).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 38 / 83

Modal µ-calculus : semantics

||a||V = {n ∈ N | label(n) = a}
||X ||V = V(X)

||¬φ||V = N \ ||φ||V
||φ ∨ ψ||V = ||φ||V ∪ ||ψ||V
|| �i φ||V = {n ∈ N | ar(n) ≥ i and succi (n) ∈ ||φ||V}
||µX . φ(X)||V =

⋂
{M ⊆ N | ||φ(X)||V[X←M] ⊆ M}

where V[X ← M] coincides with V except on X to which it maps M.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 39 / 83

Semantics of a formula

if

if

if

...data

data

Nil

data

Nil

Nil

What are the informal meaning and the semantics of

µX . (Nil ∨�X) ?

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 40 / 83

Semantics of a formula

if

if

if

...data

data

Nil

data

Nil

Nil

µX . (Nil ∨�X) means that every branch reaches Nil (and is thus finite,
since Nil is nullary). The semantics is the set of coloured nodes.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 41 / 83

Semantics of a formula

Formally,

||µX . (Nil ∨�X) || =
⋂
{M ⊆ N | ||Nil ∨�X ||[X 7→M] ⊆ M}

where
||Nil ∨�X ||[X 7→M]

is the set of nodes of the tree labelled with Nil or whose successors all
belong to M.

Notice that N itself is a valid such M. But due to the intersection, only
the minimal answer is kept: it is the set of non-if labelled nodes.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 42 / 83

Semantics of a formula

Formally,

||µX . (Nil ∨�X) || =
⋂
{M ⊆ N | ||Nil ∨�X ||[X 7→M] ⊆ M}

where
||Nil ∨�X ||[X 7→M]

is the set of nodes of the tree labelled with Nil or whose successors all
belong to M.

Notice that N itself is a valid such M. But due to the intersection, only
the minimal answer is kept: it is the set of non-if labelled nodes.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 42 / 83

Semantics of a formula

if

if

if

...data

data

Nil

data

Nil

Nil

What are the informal meaning and the semantics of

νX . (Nil ∨�X) ?

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 43 / 83

Semantics of a formula

if

if

if

...data

data

Nil

data

Nil

Nil

νX . (Nil ∨�X) means that every finite branch reaches Nil. The
semantics is the whole tree.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 44 / 83

Specifying a property in modal µ-calculus

What does

νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)

mean ? What is its semantics on the previous tree ?

It is the set of if-labelled nodes.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 45 / 83

Specifying a property in modal µ-calculus

What does

νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)

mean ? What is its semantics on the previous tree ?

It is the set of if-labelled nodes.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 45 / 83

Interaction with trees: a shift to automata theory

The interaction of a formula with a tree is usually performed by an
equivalent automaton.

Intuitively, it synchronises the unravelling of the formula with the letters of
the tree.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 46 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

q0 if φ

if

if

...data

data

Nil

data

Nil

Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X) corresponds to
a state q0.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 47 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

q0 if if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 φ

if

if

...data

data

Nil

data

Nil

Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X) corresponds to
a state q0.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 48 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

q0 if �1 (µY . (Nil ∨�Y)) ∧ �2 φ

if

if

...data

data

Nil

data

Nil

Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X) corresponds to
a state q0.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 49 / 83

Alternating parity tree automata
Idea: the formula ”starts” on the root

q0 if �2 φ

if

if

...data

data

Nil

data

Nil

q1 Nil µY . (Nil ∨�Y)

where φ corresponds to a state q0 and ψ = µY . (Nil ∨�Y) to a state
q1.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 50 / 83

Alternating parity tree automata

Idea: the formula ”starts” on the root

if

q0 if φ

if

...data

data

Nil

data

Nil

q1 Nil µY . (Nil ∨�Y)

where φ corresponds to a state q0 and ψ to a state q1

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 51 / 83

Alternating parity tree automata

Idea: the formula ”starts” on the root

if

q0 if φ

if

...data

data

Nil

data

Nil

q1 Nil Nil ∨�µY . (Nil ∨�Y)

where φ corresponds to a state q0 and ψ to a state q1

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 52 / 83

Alternating parity tree automata

Idea: the formula ”starts” on the root

if

q0 if φ

if

...data

data

Nil

data

Nil

q1 Nil Nil

So, Nil is accepted from q1.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 53 / 83

Alternating parity tree automata

Idea: the formula ”starts” on the root

if

if

q0 if φ

...data

data

Nil

q1 data µY . (Nil ∨�Y)

Nil

Nil Nil

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 54 / 83

Alternating parity tree automata

Idea: the formula ”starts” on the root

if

if

q0 if φ

...data

data

Nil

q1 data Nil ∨� (µY . (Nil ∨�Y))

Nil

Nil Nil

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 55 / 83

Alternating parity tree automata

Idea: the formula ”starts” on the root

if

if

q0 if φ

...data

data

Nil

q1 data � (µY . (Nil ∨�Y))

Nil

Nil Nil

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 56 / 83

Alternating parity tree automata

Idea: the formula ”starts” on the root

if

if

q0 if φ

...data

data

Nil

data

q1 Nil µY . (Nil ∨�Y)

Nil Nil

So, reading data from q1 should propagate q1.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 57 / 83

Alternating parity tree automata

Idea: the formula ”starts” on the root

if

if

q0 if φ

...data

data

Nil

data

q1 Nil Nil ∨� (µY . (Nil ∨�Y))

Nil Nil

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 58 / 83

Alternating parity tree automata

Idea: the formula ”starts” on the root

if

if

q0 if φ

...data

data

Nil

data

q1 Nil Nil

Nil Nil

And the automaton accepts on Nil, and so on.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 59 / 83

Alternating parity tree automata

Conversion to an automaton ?

Needs to play the formula over the tree, but always by reading a
letter.

Idea: iterate the formula several times until you find a letter.

Needs non-determinism for ∨ and alternation for ∧
Needs a parity condition for distinguishing µ and ν

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 60 / 83

Alternating parity tree automata

Conversion to an automaton ?

Needs to play the formula over the tree, but always by reading a
letter.

Idea: iterate the formula several times until you find a letter.

Needs non-determinism for ∨ and alternation for ∧
Needs a parity condition for distinguishing µ and ν

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 60 / 83

Alternating parity tree automata

Conversion to an automaton ?

Needs to play the formula over the tree, but always by reading a
letter.

Idea: iterate the formula several times until you find a letter.

Needs non-determinism for ∨ and alternation for ∧
Needs a parity condition for distinguishing µ and ν

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 60 / 83

Alternating parity automata

We define first the set B+(X) of positive Boolean formulas θ
over a set X as:

θ ::= true | false | x | θ ∧ θ | θ ∨ θ (x ∈ X)

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 61 / 83

Alternating parity automata

An alternating parity automaton (APT) A = 〈Σ, Q, δ, q0, Ω〉 is the data

of a ranked alphabet Σ of symbols of maximal arity nmax ,

of a finite set of states Q,

of a transition function δ : Q × Σ→ B+({1, . . . , nmax} × Q), such
that

∀a ∈ Σ ∀q ∈ Q δ(q, a) ∈ B+({1, . . . , ar(a)}} × Q)

of an initial state q0 ∈ Q, and of a colouring function Ω : Q → N.

We will be particularly interested in the set Col = Ω(Q) of colours of A.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 62 / 83

Alternating parity automata

An alternating parity automaton (APT) A = 〈Σ, Q, δ, q0, Ω〉 is the data

of a ranked alphabet Σ of symbols of maximal arity nmax ,

of a finite set of states Q,

of a transition function δ : Q × Σ→ B+({1, . . . , nmax} × Q), such
that

∀a ∈ Σ ∀q ∈ Q δ(q, a) ∈ B+({1, . . . , ar(a)}} × Q)

of an initial state q0 ∈ Q, and of a colouring function Ω : Q → N.

We will be particularly interested in the set Col = Ω(Q) of colours of A.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 62 / 83

Alternating parity automata

An alternating parity automaton (APT) A = 〈Σ, Q, δ, q0, Ω〉 is the data

of a ranked alphabet Σ of symbols of maximal arity nmax ,

of a finite set of states Q,

of a transition function δ : Q × Σ→ B+({1, . . . , nmax} × Q), such
that

∀a ∈ Σ ∀q ∈ Q δ(q, a) ∈ B+({1, . . . , ar(a)}} × Q)

of an initial state q0 ∈ Q, and of a colouring function Ω : Q → N.

We will be particularly interested in the set Col = Ω(Q) of colours of A.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 62 / 83

Meaning of a transition

The APT has a transition function:

δ(q0, a) =
∨
i∈I

∧
j∈J

(di ,j , qi ,j)

There is first a non-deterministic choice, then alternation.

A clause ∧
j∈J

(dj , qj)

means that the automaton runs |J| copies of itself (each in direction dj),
this potentially involving duplication or weakening of subtrees.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 63 / 83

Alternating parity tree automata

φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)

To translate φ to an automaton, consider its set of states Q as the set of
subformulas of φ. Its initial state q0 corresponds to φ, and q1 to
µY . (Nil ∨�Y).

Then:

δ(q0, Nil) = ⊥
δ(q0, data) = ⊥
δ(q0, if) = (1, q1) ∧ (2, q0)
δ(q1, Nil) = >
δ(q1, data) = (1, q1)
δ(q1, if) = (1, q1) ∧ (2, q1)

Inductive/coinductive behaviour limitations: you can only play q1 finitely,
but there are no restrictions over q0.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 64 / 83

Alternating parity tree automata

φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)

To translate φ to an automaton, consider its set of states Q as the set of
subformulas of φ. Its initial state q0 corresponds to φ, and q1 to
µY . (Nil ∨�Y).

Then:

δ(q0, Nil) = ⊥
δ(q0, data) = ⊥
δ(q0, if) = (1, q1) ∧ (2, q0)
δ(q1, Nil) = >
δ(q1, data) = (1, q1)
δ(q1, if) = (1, q1) ∧ (2, q1)

Inductive/coinductive behaviour limitations: you can only play q1 finitely,
but there are no restrictions over q0.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 64 / 83

Alternating parity tree automata

φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)

To translate φ to an automaton, consider its set of states Q as the set of
subformulas of φ. Its initial state q0 corresponds to φ, and q1 to
µY . (Nil ∨�Y).

Then:

δ(q0, Nil) = ⊥
δ(q0, data) = ⊥
δ(q0, if) = (1, q1) ∧ (2, q0)
δ(q1, Nil) = >
δ(q1, data) = (1, q1)
δ(q1, if) = (1, q1) ∧ (2, q1)

Inductive/coinductive behaviour limitations: you can only play q1 finitely,
but there are no restrictions over q0.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 64 / 83

Alternating parity tree automata

φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)

To translate φ to an automaton, consider its set of states Q as the set of
subformulas of φ. Its initial state q0 corresponds to φ, and q1 to
µY . (Nil ∨�Y).

Then:

δ(q0, Nil) = ⊥
δ(q0, data) = ⊥
δ(q0, if) = (1, q1) ∧ (2, q0)
δ(q1, Nil) = >
δ(q1, data) = (1, q1)
δ(q1, if) = (1, q1) ∧ (2, q1)

Inductive/coinductive behaviour limitations: you can only play q1 finitely,
but there are no restrictions over q0.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 64 / 83

Alternating parity tree automata

φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)

To translate φ to an automaton, consider its set of states Q as the set of
subformulas of φ. Its initial state q0 corresponds to φ, and q1 to
µY . (Nil ∨�Y).

Then:

δ(q0, Nil) = ⊥
δ(q0, data) = ⊥
δ(q0, if) = (1, q1) ∧ (2, q0)
δ(q1, Nil) = >
δ(q1, data) = (1, q1)
δ(q1, if) = (1, q1) ∧ (2, q1)

Inductive/coinductive behaviour limitations: you can only play q1 finitely,
but there are no restrictions over q0.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 64 / 83

Alternating parity tree automata

φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)

To translate φ to an automaton, consider its set of states Q as the set of
subformulas of φ. Its initial state q0 corresponds to φ, and q1 to
µY . (Nil ∨�Y).

Then:

δ(q0, Nil) = ⊥
δ(q0, data) = ⊥
δ(q0, if) = (1, q1) ∧ (2, q0)
δ(q1, Nil) = >
δ(q1, data) = (1, q1)
δ(q1, if) = (1, q1) ∧ (2, q1)

Inductive/coinductive behaviour limitations: you can only play q1 finitely,
but there are no restrictions over q0.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 64 / 83

Alternating parity tree automata

φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X)

To translate φ to an automaton, consider its set of states Q as the set of
subformulas of φ. Its initial state q0 corresponds to φ, and q1 to
µY . (Nil ∨�Y).

Then:

δ(q0, Nil) = ⊥
δ(q0, data) = ⊥
δ(q0, if) = (1, q1) ∧ (2, q0)
δ(q1, Nil) = >
δ(q1, data) = (1, q1)
δ(q1, if) = (1, q1) ∧ (2, q1)

Inductive/coinductive behaviour limitations: you can only play q1 finitely,
but there are no restrictions over q0.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 64 / 83

Alternating parity tree automata

In general, transitions may duplicate or drop a subtree.

Example: δ(q0, if) = (2, q0) ∧ (2, q1).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 65 / 83

Alternating parity tree automata

δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 66 / 83

Alternating parity tree automata
δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

and so on. This gives the notion of run-tree.
Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 67 / 83

Alternating parity tree automata
δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

and so on. This gives the notion of run-tree.
Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 67 / 83

Run-trees: formal definition

Consider a Σ-labelled tree t. A run-tree of A over t is then a
(N× Q)-labelled unranked tree r such that:

ε ∈ dom(r) and r(ε) = (ε, q0)

∀β ∈ dom(r), denoting r(β) = (α, q), there exists S ⊂ N× Q
satisfying δ(q, t(α)) and such that
∀(i , q′) ∈ S , ∃j ∈ N, (βj ∈ dom(r)) ∧ (r(βj) = (αi , q′)).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 68 / 83

Run-trees: formal definition

Remark that alternating tree automata are equivalent to non-deterministic
tree automata, yet the translation from alternating to non-deterministic
automata makes the size grow.

But there is no determinization result for non-deterministic tree automata.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 69 / 83

Alternating parity tree automata

How do we model the inductive/coinductive behaviour of modal µ-calculus
properties ? As such, run-trees are purely coinductive. . .

→ parity conditions will discriminate a posteriori the trees respecting the
inductive semantics of µ

Over a branch of a run-tree, say q0 has colour 0 and q1 has colour 1.

Now consider an infinite branch, and the maximal colour you see infinitely
often on this branch.

If it is even, accept: it means you looped infinitely on ν.

Else if it is odd the automaton rejects: it means µ was unfolded infinitely,
and this is forbidden.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 70 / 83

Alternating parity tree automata

How do we model the inductive/coinductive behaviour of modal µ-calculus
properties ? As such, run-trees are purely coinductive. . .

→ parity conditions will discriminate a posteriori the trees respecting the
inductive semantics of µ

Over a branch of a run-tree, say q0 has colour 0 and q1 has colour 1.

Now consider an infinite branch, and the maximal colour you see infinitely
often on this branch.

If it is even, accept: it means you looped infinitely on ν.

Else if it is odd the automaton rejects: it means µ was unfolded infinitely,
and this is forbidden.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 70 / 83

Alternating parity tree automata

How do we model the inductive/coinductive behaviour of modal µ-calculus
properties ? As such, run-trees are purely coinductive. . .

→ parity conditions will discriminate a posteriori the trees respecting the
inductive semantics of µ

Over a branch of a run-tree, say q0 has colour 0 and q1 has colour 1.

Now consider an infinite branch, and the maximal colour you see infinitely
often on this branch.

If it is even, accept: it means you looped infinitely on ν.

Else if it is odd the automaton rejects: it means µ was unfolded infinitely,
and this is forbidden.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 70 / 83

Alternating parity tree automata

q0 if

q0 if

q0 if

...q1 data

q1 data

q1 Nil

q1 data

q1 Nil

q1 Nil

where φ = νX . (if ∧ �1 (µY . (Nil ∨�Y)) ∧ �2 X) corresponds to
q0, and q1 to ψ = µY . (Nil ∨�Y).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 71 / 83

Accepting run-trees

Consider an infinite branch b = i0 · · · in · · · of a run-tree r and set
mn = Ω(π2(r(i0 · · · in))) where π2 is the projection giving the state
labelling a run-tree.

This branch is accepting (or winning) if the greatest colour among the
ones occuring infinitely often in the list (mn)n∈N is even.

A run-tree is accepting (or winning) iff every infinite branch is winning.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 72 / 83

Accepting run-trees and µ-calculus

Formally, given a formula, one considers its quantifier depth – the number
of quantifiers alternances.

Examples:

µX . a ∨ (νY .b ∧ (νZ .c ∨ �Z) ∧�Y) ∨ �1X
has one alternance of quantifiers (a µ, then some ν)

µX . a ∨ (νY .b ∧ (µZ .c ∨ �Z) ∧�Y) ∨ �1X
has two alternances of quantifiers (a µ, then a ν, then a µ again)

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 73 / 83

Accepting run-trees and µ-calculus

Formally, given a formula, one considers its quantifier depth – the number
of quantifiers alternances.

Examples:

µX . a ∨ (νY .b ∧ (νZ .c ∨ �Z) ∧�Y) ∨ �1X
has one alternance of quantifiers (a µ, then some ν)

µX . a ∨ (νY .b ∧ (µZ .c ∨ �Z) ∧�Y) ∨ �1X
has two alternances of quantifiers (a µ, then a ν, then a µ again)

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 73 / 83

Accepting run-trees and µ-calculus

µX . a ∨ (νY .b ∧ (νZ .c ∨ �Z) ∧�Y) ∨ �1X

will be encoded such that the states corresponding to subformlas under
the immediate scope of νY or νZ have colour 0, while the ones under
immediate scope of µX will have colour 1.

So, if the maximal colour seen infinitely often is 1, it means that µ was
unravelled infinitely: it is forbidden and thus the run-tree is non-accepting
(loosing).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 74 / 83

Accepting run-trees and µ-calculus

µX . a ∨ (νY .b ∧ (νZ .c ∨ �Z) ∧�Y) ∨ �1X

will be encoded such that the states corresponding to subformlas under
the immediate scope of νY or νZ have colour 0, while the ones under
immediate scope of µX will have colour 1.

So, if the maximal colour seen infinitely often is 1, it means that µ was
unravelled infinitely: it is forbidden and thus the run-tree is non-accepting
(loosing).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 74 / 83

Accepting run-trees and µ-calculus

µX . a ∨ (νY .b ∧ (µZ .c ∨ �Z) ∧�Y) ∨ �1X

needs more colours, due to its higher quantifier depth.

Moreover, we need to start with colour 1 for µZ , so that νY will have
colour 2, and µX colour 3.

Note that infinitely many instances of the colour 1 may occur in a
perfectly valid run-tree: if the maximal colour seen infinitely often is 2, it
means that µZ was called an infinite number of times, and eventually
ceased looping at each call (else νY would have stopped being called and
the maximal infinitely occuring colour would not be 2).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 75 / 83

Accepting run-trees and µ-calculus

µX . a ∨ (νY .b ∧ (µZ .c ∨ �Z) ∧�Y) ∨ �1X

needs more colours, due to its higher quantifier depth.

Moreover, we need to start with colour 1 for µZ , so that νY will have
colour 2, and µX colour 3.

Note that infinitely many instances of the colour 1 may occur in a
perfectly valid run-tree: if the maximal colour seen infinitely often is 2, it
means that µZ was called an infinite number of times, and eventually
ceased looping at each call (else νY would have stopped being called and
the maximal infinitely occuring colour would not be 2).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 75 / 83

APT and µ-calculus

The connection we sketched can be fully formalized, so that

a modal µ-calculus (or MSO) formula stands at the root of an infinite tree

iff

the associated APT has a winning run-tree over it

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 76 / 83

Model-checking higher-order programs

(reminder)

Verification met semantics with Ong’s decidability result (2006):

“It is decidable whether a given MSO formula holds
at the root of the value tree of a higher-order recursion scheme”

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 77 / 83

Parity games

A parity game PG = 〈(VE] VA, E), v0, Ω〉 is the data

of a directed graph G = (V = VE] VA,E),

of an initial vertex v0 ∈ V ,

and of a colouring function Ω : V → N.

We say that v ∈ V is controlled by Eve if v ∈ VE , else it is controlled by
Adam.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 78 / 83

Parity games

A parity game PG = 〈(VE] VA, E), v0, Ω〉 is the data

of a directed graph G = (V = VE] VA,E),

of an initial vertex v0 ∈ V ,

and of a colouring function Ω : V → N.

We say that v ∈ V is controlled by Eve if v ∈ VE , else it is controlled by
Adam.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 78 / 83

Parity games

A play of PG is a sequence π = v0 · v1 · · · such that ∀i (vi , vi+1) ∈ E .

It is understood as a two-player interaction starting from v0, and where at
each step i the player controlling vi chooses vi+1 according to the edges of
G .

A play is maximal if it is finite and ends with a vertice which is source of
no edge, or if it is infinite.

The colour of an infinite maximal play is the maximal colour among the
ones occuring infinitely often in (Ω(vi))i∈N.

A maximal play π = v0 · · · v1 · · · is winning for Eve if it is finite and ends
with a node controlled by Adam, or if it is infinite and has an even colour.
Else π is winning for Adam.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 79 / 83

Parity games

A strategy for Eve is a map σ from the set of plays ending in VE to V ,
and such that for every play π ending in VE π · σ(π) is a play of PG .

We say that Eve follows σ in the play π if for every prefix π′ of π ending in
VE π′ · σ(π′) is a prefix of π.

If every maximal play in which Eve follows σ is winning for her, we say
that σ is a winning strategy. Dual notions are defined for Adam.

Given strategies σE for Eve and σA for Adam, define their interaction
〈σE |σA〉 as the maximal play starting from v0 where each player plays its
strategy.

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 80 / 83

Two major facts about parity games

A parity game is determined: on every vertex, one of the players has a
winning strategy.

Moreover, this strategy is positional (memoryless), and can be effectively
computed (this problem is in NP ∩ co − NP).

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 81 / 83

Parity games and APT run-trees
Computing the existence of an accepting run-tree of an APT over a tree t
is equivalent to solving a parity game over an arena obtained from t:

The interaction starts on the root ε of t with state q0, labelled with a
symbol a. The APT has a transition function:

δ(q0, a) =
∨
i∈I

∧
j∈J

(di ,j , qi ,j)

Eve starts by picking i ∈ I .

Adam picks j ∈ J, and the game reaches the node ε · di ,j with state
qi ,j . This move plays the colour Ω(qi ,j)

. . . and so on . . .

Adam has a winning strategy iff there is no run-tree or every run-tree is
loosing for the parity condition.

Eve has a winning strategy iff there is a winning run-tree.
Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 82 / 83

Parity games and APT run-trees
Computing the existence of an accepting run-tree of an APT over a tree t
is equivalent to solving a parity game over an arena obtained from t:

The interaction starts on the root ε of t with state q0, labelled with a
symbol a. The APT has a transition function:

δ(q0, a) =
∨
i∈I

∧
j∈J

(di ,j , qi ,j)

Eve starts by picking i ∈ I .

Adam picks j ∈ J, and the game reaches the node ε · di ,j with state
qi ,j . This move plays the colour Ω(qi ,j)

. . . and so on . . .

Adam has a winning strategy iff there is no run-tree or every run-tree is
loosing for the parity condition.

Eve has a winning strategy iff there is a winning run-tree.
Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 82 / 83

Parity games and APT run-trees

But this will not give us the decidability result: the value tree of a scheme
is non-regular in general. . .

So, a way to obtain Ong’s decidability result is to obtain a regular tree (=
a finite graph), and to compute whether Eve has a winning strategy at the
root.

This regular tree is the λ-term itself, over which some higher-order version
of the APT runs.

These are the key ideas of Ong’s 2006 proof.

More generally, investigating the higher-order behaviour of APT is the key
of most proofs of the decidability theorem.

Thank you for coming !

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 83 / 83

Parity games and APT run-trees

But this will not give us the decidability result: the value tree of a scheme
is non-regular in general. . .

So, a way to obtain Ong’s decidability result is to obtain a regular tree (=
a finite graph), and to compute whether Eve has a winning strategy at the
root.

This regular tree is the λ-term itself, over which some higher-order version
of the APT runs.

These are the key ideas of Ong’s 2006 proof.

More generally, investigating the higher-order behaviour of APT is the key
of most proofs of the decidability theorem.

Thank you for coming !

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 83 / 83

Parity games and APT run-trees

But this will not give us the decidability result: the value tree of a scheme
is non-regular in general. . .

So, a way to obtain Ong’s decidability result is to obtain a regular tree (=
a finite graph), and to compute whether Eve has a winning strategy at the
root.

This regular tree is the λ-term itself, over which some higher-order version
of the APT runs.

These are the key ideas of Ong’s 2006 proof.

More generally, investigating the higher-order behaviour of APT is the key
of most proofs of the decidability theorem.

Thank you for coming !

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 83 / 83

Parity games and APT run-trees

But this will not give us the decidability result: the value tree of a scheme
is non-regular in general. . .

So, a way to obtain Ong’s decidability result is to obtain a regular tree (=
a finite graph), and to compute whether Eve has a winning strategy at the
root.

This regular tree is the λ-term itself, over which some higher-order version
of the APT runs.

These are the key ideas of Ong’s 2006 proof.

More generally, investigating the higher-order behaviour of APT is the key
of most proofs of the decidability theorem.

Thank you for coming !

Charles Grellois (PPS & LIAFA) Logic, automata, games Sémantique & Vérification 83 / 83

