First steps towards probabilistic higher-order model-checking

Charles Grellois Ugo dal Lago

FOCUS Team - INRIA \& University of Bologna
GDRI-LL Meeting on Intersection Types June 14, 2016

Roadmap

(1) A reminder of higher-order model-checking (HOMC) and intersection types for HOMC
(2) Non-idempotent intersection types and HOMC for almost-sure MSO properties
(3) Automata for probabilistic properties (weaker than MSO), intersection types, tensorial logic with effects

Higher-order model-checking

Model-checking

ϕ a logical property on trees, e.g. "all executions are finite".

Model-checking: does $\mathcal{T} \vDash \phi$?

Higher-order model-checking

Infinite trees with a finite representation: a λY-term or a higher-order recursion scheme (HORS).

$$
\mathcal{G}= \begin{cases}\mathrm{S} & =\mathrm{LNil} \\ \mathrm{~L} x & =\text { if } x(\mathrm{~L}(\operatorname{data} x))\end{cases}
$$

\longrightarrow model-checking on λ-terms or HORS.

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta\left(q_{0}\right.$, if $)=\left(2, q_{0}\right) \wedge\left(2, q_{1}\right)$.

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta\left(q_{0}\right.$, if $)=\left(2, q_{0}\right) \wedge\left(2, q_{1}\right)$.

Alternating parity tree automata

Express reachability with ATA: does every branch ends by Nil?

Problem: ATA execute coinductively.

Solution: parity condition.

Alternating parity tree automata

Each state of an APT is attributed a color

$$
\Omega(q) \in C o l \subseteq \mathbb{N}
$$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.

Alternating parity tree automata

Each state of an APT is attributed a color

$$
\Omega(q) \in C o l \subseteq \mathbb{N}
$$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula φ :
\mathcal{A}_{φ} has a winning run-tree over $\langle\mathcal{G}\rangle$ iff $\langle\mathcal{G}\rangle \vDash \phi$.

Alternating parity tree automata

$$
\begin{aligned}
& Q=\{q\} \\
& \Omega(q)=1 \\
& \delta(\text { if }, q)=(1, q) \wedge(2, q)
\end{aligned}
$$

$$
\delta(\text { data }, q)=(1, q)
$$

$$
\delta(\mathrm{Nil}, q)=\top
$$

HOMC and intersection types

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

$$
\delta\left(q_{0}, \text { if }\right)=\left(2, q_{0}\right) \wedge\left(2, q_{1}\right)
$$

can be seen as the intersection typing

$$
\text { if }: \emptyset \rightarrow\left(q_{0} \wedge q_{1}\right) \rightarrow q_{0}
$$

refining the simple typing

$$
\text { if : } 0 \rightarrow 0 \rightarrow 0
$$

(this talk is NOT about filter models!)

Alternating tree automata and intersection types

A run-tree over if $T_{1} \quad T_{2}$ is a derivation of $\emptyset \vdash$ if $T_{1} \quad T_{2}$:

$$
\operatorname{App} \frac{\emptyset \vdash \text { if }: \emptyset \rightarrow\left(q_{0} \wedge q_{1}\right) \rightarrow q_{0}}{} \frac{\emptyset}{\emptyset \vdash \text { if } T_{1}:\left(q_{0} \wedge q_{1}\right) \rightarrow q_{0}} \frac{\vdots}{\emptyset \vdash \text { if } T_{1} T_{2}: q_{0}} \quad \begin{aligned}
& \emptyset \vdash T_{2}: q_{0} \\
& \emptyset \vdash T_{2}: q_{1} \\
&
\end{aligned}
$$

Intersection types naturally lift to higher-order - and thus to \mathcal{G}, which finitely represents $\langle\mathcal{G}\rangle$.

Theorem (Kobayashi)

$S: q_{0} \vdash S: q_{0} \quad$ iff \quad the $A T A \mathcal{A}_{\varphi}$ has a run-tree over $\langle\mathcal{G}\rangle$.

Here: variant with non-idempotent types.
Under connection Rel/non-idempotent types, we obtain a similar denotational theorem.

A type-system for verification: without parity conditions

$$
\text { Axiom } \overline{x: \bigwedge_{\{i\}} \theta_{i}:: \kappa \vdash x: \theta_{i}:: \kappa}
$$

$$
\delta \frac{\left\{\left(i, q_{i j}\right) \mid 1 \leq i \leq n, 1 \leq j \leq k_{i}\right\} \text { satisfies } \delta_{A}(q, a)}{\emptyset \vdash a: \bigwedge_{j=1}^{k_{1}} q_{1 j} \rightarrow \ldots \rightarrow \bigwedge_{j=1}^{k_{n}} q_{n j} \rightarrow q:: o \rightarrow \cdots \rightarrow o}
$$

App

$$
\begin{aligned}
& \frac{\Delta \vdash t:\left(\theta_{1} \wedge \cdots \wedge \theta_{k}\right) \rightarrow \theta:: \kappa \rightarrow \kappa^{\prime} \quad \Delta_{i} \vdash u: \theta_{i}:: \kappa}{\Delta+\Delta_{1}+\ldots+\Delta_{k} \vdash t u: \theta:: \kappa^{\prime}} \\
& \lambda \quad \frac{\Delta, x: \bigwedge_{i \in I} \theta_{i}:: \kappa \vdash t: \theta:: \kappa^{\prime}}{\Delta \vdash \lambda x \cdot t:\left(\bigwedge_{i \in I} \theta_{i}\right) \rightarrow \theta:: \kappa \rightarrow \kappa^{\prime}} \\
& \quad \text { fix } \frac{\Gamma \vdash \mathcal{R}(F): \theta:: \kappa}{\overline{F: \theta:: \kappa \vdash F: \theta:: \kappa}}
\end{aligned}
$$

Idea of the proof

Theorem
$S: q_{0} \vdash S: q_{0}$ iff the ATA \mathcal{A}_{ϕ} has a run-tree over $\langle\mathcal{G}\rangle$.

- Soundness: infinitary (in fact, coinductive) subject reduction
- Completeness: build a derivation for \mathcal{G} (similar to subject expansion)

Soundness

where the C_{i} are the tree contexts obtained by normalizing each π_{i}.
$C_{0}\left[C_{1}[], C_{2}[]\right]$ is a prefix of a run-tree of \mathcal{A} over $\langle\mathcal{G}\rangle$.

Colored intersection types

A type-system for verification

(G.-Melliès 2014, from Kobayashi-Ong 2009)

App $\frac{\Delta \vdash t:\left(\square_{c_{1}} \theta_{1} \wedge \cdots \wedge \square_{c_{k}} \theta_{k}\right) \rightarrow \theta:: \kappa \rightarrow \kappa^{\prime} \quad \Delta_{i} \vdash u: \theta_{i}:: \kappa}{\Delta+\square_{c_{1}} \Delta_{1}+\ldots+\square_{c_{k}} \Delta_{k} \vdash t u: \theta:: \kappa^{\prime}}$
Subject reduction: the contraction of a redex

A type-system for verification

App $\frac{\Delta \vdash t:\left(\square_{c_{1}} \theta_{1} \wedge \cdots \wedge \square_{c_{k}} \theta_{k}\right) \rightarrow \theta:: \kappa \rightarrow \kappa^{\prime} \quad \Delta_{i} \vdash u: \theta_{i}:: \kappa}{\Delta+\square_{c_{1}} \Delta_{1}+\ldots+\square_{c_{k}} \Delta_{k} \vdash t u: \theta:: \kappa^{\prime}}$ gives a proof of the same sequent:

A type system for verification

We rephrase the parity condition to typing trees, and now capture all MSO:

Theorem (G.-Melliès 2014, from Kobayashi-Ong 2009)
$S: q_{0} \vdash S: q_{0}$ admits a winning typing derivation
iff
the alternating parity automaton \mathcal{A} has a winning run-tree over $\langle\mathcal{G}\rangle$.

- Soundness: infinitary (in fact, coinductive) subject reduction + study of color preservation on infinite branches
- Completeness: build an optimal derivation for \mathcal{G}

Soundness

Crucial lemma of Kobayashi-Ong (unpublished and reformulated here): every infinite branch of $\emptyset \vdash\langle\mathcal{G}\rangle: q_{0}$ comes from an infinite branch of $S: q_{0} \vdash S: q_{0}$.

Consequence: derivation of $S: q_{0} \vdash S: q_{0}$ is winning \Longrightarrow the run-tree computed by subject reduction is as well.

Soundness

Reformulated in this non-idempotent setting, this lemma seems to induce:

Conjecture

There is an injection from the infinite branches of the run-tree to these of the derivation of $S: q_{0} \vdash S: q_{0}$.

Completeness and optimality

Completeness: build a derivation for $S: q_{0} \vdash S: q_{0}$ from a run-tree ($=$ a derivation for $\left.\emptyset \vdash\langle\mathcal{G}\rangle: q_{0}\right)$.

Main challenge: consider

$$
\mathcal{G}=\left\{\begin{aligned}
S & =F H \\
F & =\lambda x \cdot a(F x) \\
H & =b H
\end{aligned}\right.
$$

producing

$$
\langle\mathcal{G}\rangle=\text { aaa. }
$$

via finite reductions

$$
S \rightarrow \mathcal{G}_{\mathcal{G}}^{*} \quad a \cdots a F(b \cdots b H)
$$

(only head reduction is optimal)

Completeness and optimality

Completeness: build a derivation for $S: q_{0} \vdash S: q_{0}$ from a run-tree $(=$ a derivation for $\left.\emptyset \vdash\langle\mathcal{G}\rangle: q_{0}\right)$.

Main challenge: consider

$$
\mathcal{G}=\left\{\begin{aligned}
S & =F H \\
F & =\lambda x \cdot a(F x) \\
H & =b H
\end{aligned}\right.
$$

We need to detect that H is never contributes to $\langle\mathcal{G}\rangle$, else we can take:

$$
F: \square_{0}\left(\square_{0} q_{0} \rightarrow q_{0}\right)
$$

and introduce a loosing branch for H.
Completeness proof \rightarrow define an optimal derivation (relying on the optimality of head reduction).

Almost-sure MSO properties

Almost-sure MSO properties

In the spirit of qualitative tree languages, consider an $\mathrm{APT} \mathcal{A}$ with the following acceptance condition:
a run-tree is almost winning
iff
the set of its branches loosing for the parity condition has measure 0 .

This allows to check whether a MSO property is almost-surely satisfied.

Almost-sure MSO properties

Consider the same non-idempotent intersection type system as for MSO.

But change the winning condition accordingly.

Conjecture

$S: q_{0} \vdash S: q_{0}$ admits an almost winning typing derivation

> iff
the $A P T \mathcal{A}$ has an almost winning run-tree over $\langle\mathcal{G}\rangle$.

Almost-sure MSO properties

Soundness: reduction process which may drop branches (cf. the infinite branch injection conjecture).

So the size of the set of loosing branches decreases.

Almost-sure MSO properties

Completeness: from the proof of Kobayashi and Ong, in a non-idempotent setting:

Conjecture

There is a 1-to-1 correspondence between the infinite branches of the run-tree and these of the optimal derivation of $S: q_{0} \vdash S: q_{0}$ built by the completeness proof.

In other words: in this particular case of an optimal proof, the injection of the previous conjecture becomes a bijection.

It follows that the existence of an almost winning run-tree over $\langle\mathcal{G}\rangle$ gives an almost winning derivation of $S: q_{0} \vdash S: q_{0}$.

Probabilistic automata

Probabilistic HOMC

Probabilistic automata

Idea: check that ϕ holds with probability $\geq p$ i.e. that it holds on a subtree of measure $\geq p$.
We extend an ATA \mathcal{A} with some quantitative behavior.

Probabilistic automata (PATA):

- ATA on non-probabilistic symbols
- + probabilistic behavior on choice symbol \oplus_{p}

Run-tree: labels $\left(q, p_{b}, p_{f}\right)$.

The root of a run-tree of probability p is labeled $\left(q_{0}, 1, p\right)$, where p is the probability with which we want the tree to satisfy the formula.

Probabilistic automata

Probabilistic behavior:

$$
\oplus_{p} \overbrace{b}^{\left(q, p_{b}, p_{f}\right)}
$$

is labeled as

$$
b \quad\left(q, p \times \oplus_{p} \quad\left(q, p_{b}, p_{f}\right)-p_{f}^{\prime}\right) \quad c \quad\left(q,(1-p) \times p_{b}, p_{f}-p_{f}^{\prime}\right)
$$

for some $p_{f}^{\prime} \in\left[0, p_{f}\right]$ such that $p_{f}^{\prime} \leq p \times p_{b}$ and $p_{f}-p_{f}^{\prime} \leq(1-p) \times p_{b}$.

Example of PATA run

$\phi=$ "all the branches of the tree contain data"
is modeled by the PATA:

- $\delta_{1}\left(q_{0}\right.$, data $)=\left(1, q_{1}\right)$,
- $\delta_{1}\left(q_{1}\right.$, data $)=\left(1, q_{1}\right)$,
- $\delta_{1}\left(q_{0}, \mathrm{Nil}\right)=\perp$,
- $\delta_{1}\left(q_{1}, \mathrm{Nil}\right)=\mathrm{T}$.

Example of PATA run

$$
\begin{aligned}
& \frac{1}{10}\left(q_{0}, 1, \frac{9}{10}\right) \\
& \text { Nil }\left(q_{0}, \frac{1}{10}, 0\right) \\
& \oplus_{\frac{1}{10}} \quad\left(q_{0}, \frac{9}{10}, \frac{9}{10}\right) \\
& \begin{array}{l}
\text { data }\left(q_{0}, \frac{9}{100}, \frac{9}{100}\right) \\
\text { Nil }\left(q_{1}, \frac{9}{100}, \frac{9}{100}\right)
\end{array}
\end{aligned}
$$

Intersection types for PATA

As for ATA, except for tree constructors:

$$
\begin{gathered}
\frac{\left\{\left(i, q_{i j}\right) \mid 1 \leq i \leq n, 1 \leq j \leq k_{i}\right\} \text { satisfies } \delta_{A}(q, a)}{\emptyset \vdash a: \bigwedge_{j=1}^{k_{1}}\left(q_{1 j}, p_{b}, p_{f}\right) \rightarrow \ldots \rightarrow \bigwedge_{j=1}^{k_{n}}\left(q_{n j}, p_{b}, p_{f}\right) \rightarrow\left(q, p_{b}, p_{f}\right)} \\
\frac{\left.p_{f}^{\prime} \in\right] 0, p_{f}\left[\quad \text { and } \quad p_{f}^{\prime} \leq p \times p_{b} \quad \text { and } \quad p_{f}-p_{f}^{\prime} \leq(1-p) \times p_{b}\right.}{\emptyset \vdash \oplus_{p}:\left(q, p \times p_{b}, p_{f}^{\prime}\right) \rightarrow\left(q,(1-p) \times p_{b}, p_{f}-p_{f}^{\prime}\right) \rightarrow\left(q, p_{b}, p_{f}\right)} \\
\frac{q \in Q \quad \text { and } \quad p \times p_{b} \geq p_{f}}{\emptyset \vdash \oplus_{p}:\left(q, p \times p_{b}, p_{f}\right) \rightarrow \emptyset \rightarrow\left(q, p_{b}, p_{f}\right)} \\
\frac{q \in Q \quad \text { and } \quad(1-p) \times p_{b} \geq p_{f}}{\emptyset \vdash \oplus_{p}: \emptyset \rightarrow\left(q,(1-p) \times p_{b}, p_{f}\right) \rightarrow\left(q, p_{b}, p_{f}\right)}
\end{gathered}
$$

Intersection types for PATA

Conjecture

$$
\begin{gathered}
\emptyset \vdash t:\left(q_{0}, 1, p\right) \\
i f f
\end{gathered}
$$

the PATA \mathcal{A} has a run-tree of probability p over the tree $\langle t\rangle$ generated by t (which is a term or an unfolded λY-term).

To check: that the former proof works with an infinite amount of types refining o.

Intersection types for PATA

Conjecture

$$
\begin{gathered}
\emptyset \vdash t:\left(q_{0}, 1, p\right) \\
i f f
\end{gathered}
$$

the PATA \mathcal{A} has a run-tree of probability p over the tree $\langle t\rangle$ generated by t (which is a term or an unfolded λY-term).

Under connection Rel/non-idempotent types, we obtain a similar denotational theorem.

Note that $\llbracket \circ \rrbracket=Q \times[0,1] \times[0,1]$.

Automata are counter-programs with effects

Grellois-Melliès, CSL 2015:

With a linear logic point of view: HOMC is a dual process between
a program: the recursion scheme \mathcal{G},
and
a counter-program with (co)effects: the APT \mathcal{A}.

Tensorial logic with effects and PATA

Tensorial logic

- A refinement of linear logic
- A logic of tensor, sum and negation where $A \not \approx \neg \neg A$
- Purpose: conciliate linear logic with algebraic effects
- Deeply related to game semantics: it is the syntax of dialogue games...
- ... and more generally related to dialogue categories

Tensorial logic with effects (Melliès) connects with semantics (dialogue categories with effects)

States in tensorial logic

$$
\begin{gathered}
\text { Lookup } \frac{\Gamma \vdash \perp}{} \frac{\ldots}{\Gamma \vdash \perp} \Gamma \vdash \perp \\
\\
\text { Update }_{\text {val }} \\
\frac{\Gamma \vdash \perp}{\Gamma \vdash \perp}
\end{gathered}
$$

and equations such as

$$
\begin{array}{ccc}
\pi & \pi & \pi \\
\vdots \\
\Gamma \vdash \perp \\
& = & \vdots \\
\text { Update }_{v a l_{1}} & \frac{\Gamma \vdash \perp}{\Gamma \vdash \perp} & \cdots \\
& & \frac{\Gamma \vdash \perp}{\Gamma \vdash \perp} \\
& \text { Lookup }^{\Gamma \vdash \perp} &
\end{array}
$$

Tensorial logic and PATA

$\begin{aligned} & \text { Update }_{q_{0}, p \times p_{b}, p_{f}^{\prime}} \frac{\Gamma \vdash t_{1}: \perp}{\Gamma \vdash t_{1}: \perp} \\ & \text { Choice }_{p_{f}^{\prime}} \frac{\Gamma \vdash t_{2}: \perp}{\Gamma \vdash t_{2}: \perp} \\ & \text { Lookup }_{p_{b}, p_{f}} \text { Update }_{q_{0},(1-p) \times p_{p}, p_{f}-p_{f}^{\prime}} \\ & \ldots \vdash \oplus_{p} t_{1} t_{2}: \perp \\ & \Gamma \vdash \oplus_{p} t_{1} t_{2}: \perp\end{aligned}$
where $\oplus_{p}: \perp \multimap \perp \multimap \perp \in \Gamma$

Fundamental idea: the state of the automaton is a state in the sense of the state monad. Non-determinism is handled by a monadic effect as well.

Tensorial logic and PATA

$$
\delta\left(a, q_{0}\right)=\left(1, q_{0}\right) \wedge\left(1, q_{1}\right) \quad \delta\left(a, q_{1}\right)=\perp
$$

where $a:!\perp \multimap \perp \in \Gamma$

Exceptions when δ is not defined.

Automata are counter-programs with effects

What's next

- A non-idempotent variant of Kobayashi-Ong's result (in a coinductive way?)
- Find a less naive type system
- Connection with denotational models: Rel, dialogue categories with effects

