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Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program

Specify a property ϕ in an appropriate logic

Interaction: the result is whether

M � ϕ

Typically: translate ϕ to an equivalent automaton running over M:

ϕ 7→ Aϕ
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Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

...data

data

Nil

data

Nil

Nil
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Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

...data

data

Nil

data

Nil

Nil

How to represent this tree finitely?
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Model-checking higher-order programs

For higher-order programs with recursion, M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) Aϕ

corresponding to a

monadic second-order logic (MSO) formula ϕ.

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?
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Automata theory, typing,
and recognition by homomorphism
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A very naive model-checking problem

A simpler problem first: execution traces as finite words, properties as
finite automata.

A word of actions :

open · (read · write)2 · close

A property to check: is every read immediately followed by a write ?

→ automaton with two states: Q = {q0, qread}.

q0 is both initial and final.
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A type-theoretic intuition

δ(q0, read) = qread

corresponds to the typing

read : qread → q0

refining the simple type

o → o

Type of a word: a state from which it is accepted.
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A type-theoretic intuition: a run of the automaton

` open : q0 → q0 ` (read · write)2 · close : q0

` open · (read · write)2 · close : q0
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A type-theoretic intuition: a run of the automaton

` read : qread → q0

` write : q0 → qread ` read · write · close : q0

` write · read · write · close : qread

` (read · write)2 · close : q0

...

and so on.

Typing naturally extends to terms.
Subject reduction/expansion allow some static analysis.

Let’s do the same for recursion schemes – which compute trees.
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Automata and recognition

Given a language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism φ : A∗ → M such that L = φ−1(K ).

Roughly speaking: there exists a finite algebraic structure in which the
language is interpreted.

Extension to terms of this recognition by morphism, using domains
(Salvati 2009).
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Higher-order recursion schemes

Some regularity for infinite trees

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 10 / 35



Higher-order recursion schemes

Main = Listen Nil

Listen x = if end then x else Listen (data x)

is abstracted as

G =

{
S = L Nil

L x = if x (L (data x ) )

which produces (how ?) the higher-order tree of actions

if

if
...data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

Rewriting starts from the start symbol S:

S →G
L

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

L

Nil

→G

if

L

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

〈G〉 =

if

if

if

...data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

“Everything” is simply-typed, and

well-typed programs can’t go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol Ω in one step).
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

“Everything” is simply-typed, and

well-typed programs can’t go too wrong:

we can detect productivity, and enforce it (replace divergence by outputing
a distinguished symbol Ω in one step).

HORS can alternatively be seen as simply-typed λ-terms with

simply-typed recursion operators Yσ : (σ → σ)→ σ.
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Alternating parity tree automata
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Alternating parity tree automata

For a MSO formula ϕ,

〈G〉 � ϕ

iff an equivalent APT Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil
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Alternating parity tree automata

MSO discriminates inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.
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Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

c1

c2

c3

c4

c5
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Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � φ.
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Intersection types and alternation
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Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ → (q0 ∧ q1)→ q0

refining the simple typing

if : o → o → o

(this talk is NOT about filter models!)
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Alternating tree automata and intersection types

In a derivation typing if T1 T2 :

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
Γ21 ` T2 : q0

...
Γ22 ` T2 : q1

App
Γ21, Γ22 ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi)

S : q0 ` S : q0 iff the ATA Aϕ has a run-tree over 〈G〉.
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A type-system for verification: without parity conditions

Axiom
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i , qij ) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn

j=1 qnj → q :: o → · · · → o

∆ ` t : ( θ1 ∧ · · · ∧ θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ , ∆1 , . . . , ∆k ` t u : θ :: κ′

∆ , x :
∧

i∈I θi :: κ ` t : θ :: κ′

λ
∆ ` λ x . t :

(∧
i∈I θi

)
→ θ :: κ→ κ′

Γ ` R(F ) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ
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A closer look at the Application rule

∆ ` t : ( θ1 ∧ · · · ∧ θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ , ∆1 , . . . , ∆k ` t u : θ :: κ′

Towards sequent calculus:

∆ ` t : (
∧n

i=1 θi )→ θ′
∆i ` u : θi ∀i ∈ {1, . . . n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′
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A closer look at the Application rule

∆ ` t : (
∧n

i=1 θi )→ θ′
∆i ` u : θi ∀i ∈ {1, . . . n}

Right
∧

∆1, . . . , ∆n ` u :
∧n

i=1 θi

∆, ∆1, . . . , ∆n ` t u : θ′

Linear decomposition of the intuitionnistic arrow:

A⇒ B = ! A( B

Two steps: duplication / erasure, then linear use.

Right
∧

corresponds to the Promotion rule of indexed linear logic.
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Intersection types and semantics of linear logic

A⇒ B = ! A( B

Two interpretations of the exponential modality:

Qualitative models
(Scott semantics)

! A = Pfin(A)

[[o ⇒ o]] = Pfin(Q)× Q

{q0, q0, q1} = {q0, q1}

Order closure

Quantitative models
(Relational semantics)

! A = Mfin(A)

[[o ⇒ o]] = Mfin(Q)× Q

[q0, q0, q1] 6= [q0, q1]

Unbounded multiplicities
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Intersection types and semantics of linear logic

Rel!

Ehrhard

��

Bucciareli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard , G−M

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

Fundamental idea:

[[t]] ∼= { θ | ∅ ` t : θ }

and similarly for open terms.
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Intersection types and semantics of linear logic

Rel!

Ehrhard

��

Bucciareli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard , G−M

��

oo

ScottL!
Ehrhard

Terui
// Idempotent typesoo

Let t be a term normalizing to a tree 〈t〉 and A be an alternating
automaton.

A accepts 〈t〉 from q ⇔ q ∈ [[t]] ⇔ ∅ ` t : q :: o

Extension with recursion and parity condition?
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Adding parity conditions
to the type system
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Alternating parity tree automata

We add coloring annotations to intersection types:

δ(q0, if) = (2, q0) ∧ (2, q1)

now corresponds to

if : ∅ →
(
�Ω(q0) q0 ∧�Ω(q1) q1

)
→ q0

Idea: if is a run-tree with two holes:

if

[ ]q1[ ]q0

A new neutral color: ε for an empty term [ ]q. Goal: subject
reduction/expansion.
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A type-system for verification

∆ ` t : (�c1 θ1 ∧ · · · ∧�ck
θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �c1 ∆1 + . . . + �ck

∆k ` t u : θ :: κ′

Subject reduction: the contraction of a redex

c1
c2

c ′i

π0
πi

∆, x : �c1 θ1 ∧ · · · ∧�ck
θk ` t : θ

∆ ` λx . t : (�c1 θ1 ∧ · · · ∧�ck
θk )→ θ ∆i ` u : θi

∆ + �c1∆1 + . . . + �ck
∆k ` (λx . t ) u : θ

x : �ε θ1 ` x : θ1 x : �ε θ2 ` x : θ2

y : �ε σi ` y : σi
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A type-system for verification

∆ ` t : (�c1 θ1 ∧ · · · ∧�ck
θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �c1 ∆1 + . . . + �ck

∆k ` t u : θ :: κ′

gives a proof of the same sequent:

c1
c2

c ′1 c ′2

π0

π1 π2

∆ + �c1∆1 + . . . + �ck
∆k ` t[x ← u] : θ

y : �ε σ1 ` y : σ1 y : �ε σ2 ` y : σ2
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A type-system for verification

Axiom
x :

∧
{i} �ε θi :: κ ` x : θi :: κ

{ (i , qij ) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1�Ω(q1j ) q1j → . . . →
∧kn

j=1�Ω(qnj ) qnj → q :: o → · · · → o → o

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �m1 ∆1 + . . . + �mk

∆k ` t u : θ :: κ′

Γ ` R(F ) : θ :: κ
fix

F : �ε θ :: κ ` F : θ :: κ

∆ , x :
∧

i∈I �mi θi :: κ ` t : θ :: κ′

λ
∆ ` λ x . t :

(∧
i∈I �mi θi

)
→ θ :: κ→ κ′
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A type-system for verification

We rephrase the parity condition to typing trees, and now capture all MSO:

Theorem (G.-Melliès 2014)

S : q0 ` S : q0 admits a winning typing derivation iff the alternating
parity automaton A has a winning run-tree over 〈G〉.

We obtain decidability by collapsing to idempotent types.

Non-idempotency is very helpful for proofs, but leads to infinitary
constructions.

Charles Grellois (IRIF - Bologna) Semantics of linear logic and model-checking January 20, 2016 30 / 35



Colored models of linear logic
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A closer look at the Application rule

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk )→ θ :: κ→ κ′ ∆i ` u : θi :: κ

∆ + �m1 ∆1 + . . . + �mk
∆k ` t u : θ :: κ′

Towards sequent calculus:

∆ ` t : (
∧n

i=1 �mi θi )→ θ

∆1 ` u : θ1

�m1 ∆1 ` u : �m1 θ1 . . .
∆n ` u : θn Right �

�mn ∆n ` u : �mn θ1
Right

∧
�m1∆1, . . . , �mn ∆n ` u :

∧n
i=1 �mi θi

∆, �m1∆1, . . . , �mn ∆n ` t u : θ

Right � looks like a promotion. In linear logic:

A⇒ B = !�A( B

Our reformulation of the Kobayashi-Ong type system shows that � is a
modality which distributes with the exponential in the semantics.
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Colored semantics

We extend:

Rel with countable multiplicites, coloring and an
inductive-coinductive fixpoint

ScottL with coloring and an inductive-coinductive fixpoint.

Methodology: think in the relational semantics, and adapt to the Scott
semantics using Ehrhard’s 2012 result:

the finitary model ScottL is the extensional collapse of Rel .
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Model-checking and finitary semantics

Let G be a HORS representing the tree 〈G〉 and A be an alternating parity
automaton.

Conjecture in infinitary Rel , but theorem in colored ScottL:

A accepts 〈G〉 from q ⇔ q ∈ [[t]]

A similar theorem holds for a companion intersection type system to
colored ScottL. Since the semantics are finitary:

Corollary

The higher-order model-checking problem is decidable.
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Conclusion

Sort of static analysis of infinitary properties.

We lift to higher-order the behavior of APT.

Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

In idempotent type systems / finitary semantics, we obtain
decidability of higher-order model-checking.

Thank you for your attention!
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