
A semantic study of higher-order model-checking

Charles Grellois (PhD work, joint with Paul-André Melliès)

PPS & LIAFA — Université Paris 7
University of Dundee

Dundee University — Aug 21, 2015

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 1 / 48

Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program

Specify a property ϕ in an appropriate logic

Make them interact: the result is whether

M � ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ 7→ Aϕ

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 2 / 48

Model-checking higher-order programs

For higher-order programs with recursion (Haskell, OCaml, Javascript,
Python. . .), M is a higher-order tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 3 / 48

Model-checking higher-order programs

For higher-order programs with recursion (Haskell, OCaml, Javascript,
Python. . .), M is a higher-order tree.

Example:

Main = Listen Nil

Listen x = if end then x else Listen (data x)

modelled as

if

if

if

...data

data

Nil

data

Nil

Nil

How to represent this tree finitely?

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 3 / 48

Model-checking higher-order programs

For higher-order programs with recursion (Haskell, OCaml, Javascript,
Python. . .), M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) Aϕ

corresponding to a

monadic second-order logic (MSO) formula ϕ.

(safety, liveness properties, etc)

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 3 / 48

Model-checking higher-order programs

For higher-order programs with recursion (Haskell, OCaml, Javascript,
Python. . .), M is a higher-order tree

over which we run

an alternating parity tree automaton (APT) Aϕ

corresponding to a

monadic second-order logic (MSO) formula ϕ.

(safety, liveness properties, etc)

Can we decide whether a higher-order tree satisfies a MSO formula?

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 3 / 48

Automata theory and typing

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 4 / 48

A very naive model-checking problem

Let’s simplify our model-checking problem:

Actions of the program are modelled by a finite word

The property to check corresponds to a finite automaton

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 5 / 48

A very naive model-checking problem

A word of actions :

open · (read · write)2 · close

A property to check: is every read immediately followed by a write ?

Corresponds to an automaton with two states: Q = {q0, qread}.

q0 is both initial and final.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 6 / 48

A type-theoretic intuition

The transition function may be seen as a typing of the letters of the word,
seen as function symbols.

For example,

δ(q0, read) = qread

corresponds to the typing

read : qread → q0

The type of a word is a state from which it is accepted.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 7 / 48

A type-theoretic intuition: a run of the automaton

` open · (read · write)2 · close : q0

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 8 / 48

A type-theoretic intuition: a run of the automaton

` open : q0 → q0 ` (read · write)2 · close : q0

` open · (read · write)2 · close : q0

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 9 / 48

A type-theoretic intuition: a run of the automaton

` read : qread → q0 ` write · read · write · close : qread

` (read · write)2 · close : q0

...

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 10 / 48

A type-theoretic intuition: a run of the automaton

` read : qread → q0

` write : q0 → qread ` read · write · close : q0

` write · read · write · close : qread

` (read · write)2 · close : q0

...

and so on.

Typing naturally extends to programs computing words.

We will try to do the same for recursion schemes – which compute trees.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 11 / 48

Automata and recognition

Recall that, given a language L ⊆ A∗,

there exists a finite automaton A recognizing L

if and only if

there exists a finite monoid M, a subset K ⊆ M
and a homomorphism φ : A∗ → M such that L = φ−1(K).

Roughly speaking: there exists a finite algebraic structure in which the
language is interpreted.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 12 / 48

A very naive model-checking problem

The model-checking problem can be solved by:

computing the interpretation of a word (its denotation)

and check whether it belongs to M

Reminiscent of interpretations in logical models −→ model-check terms.

Link with typing: typings compute the denotations.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 13 / 48

A very naive model-checking problem

A more elaborate problem: what about ultimately periodic words and
Büchi automata ?

Extend the monoid’s behaviour with recursion (for periodicity) modelling
the Büchi condition.

Or, on typings, define an acceptance condition on infinite derivations.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 14 / 48

Higher-order recursion schemes

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 15 / 48

Higher-order recursion schemes

Main = Listen Nil

Listen x = if end then x else Listen (data x)

is abstracted as

G =

{
S = L Nil

L x = if x (L (data x))

which produces (how ?) the higher-order tree of actions

if

if
...data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 16 / 48

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Sort of deterministic higher-order grammar providing a finite
representation of higher-order trees.

Rewrite rules have (higher-order) parameters.

“Everything” is simply-typed.

Rewriting produces a tree 〈G〉.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 17 / 48

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Rewriting starts from the start symbol S:

S →G
L

Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 17 / 48

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 17 / 48

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 17 / 48

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

〈G〉 is an infinite
non-regular tree.

It is our model M.

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 17 / 48

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

HORS can alternatively be seen as simply-typed λ-terms with

free variables of order at most 1 (= tree constructors)

and

simply-typed recursion operators Yσ : (σ → σ)→ σ.

Here : G ! (Yo→o (λL.λx .if x (L (data x)))) Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 17 / 48

Higher-order recursion schemes

In general, many reductions could be used to compute (subsets of) 〈G〉.
For (infinitary) λ-calculus, we can focus on the parallel head reduction,
defined coinductively:

(λx . s) t →w s[x ← t]
s →w s ′

s t →w s ′ t

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 18 / 48

Higher-order recursion schemes

In general, many reductions could be used to compute (subsets of) 〈G〉.
For (infinitary) λ-calculus, we can focus on the parallel head reduction,
defined coinductively:

(λx . s) t →w s[x ← t]

s →w s ′

s →h s ′

s →w s ′

s t →w s ′ t

s →h s ′

λx . s →h λx . s ′

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 18 / 48

Higher-order recursion schemes

In general, many reductions could be used to compute (subsets of) 〈G〉.
For (infinitary) λ-calculus, we can focus on the parallel head reduction,
defined coinductively:

(λx . s) t →w s[x ← t]

s →w s ′

s →h s ′

s →w s ′

s t →w s ′ t

s →h s ′

λx . s →h λx . s ′

t →∗h λx1 · · ·λxm. a t1 · · · tn ti →∞h t ′i (∀i) a 6≡ ⊥
t →∞h λx1 · · ·λxm. a t ′1 · · · t ′n

t has no hnf

t →∞h ⊥

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 18 / 48

Higher-order recursion schemes

We can adapt this to HORS:

(λx . s) t →Gw s[x ← t]
s →Gw s ′

s t →Gw s ′ t

F →Gw R(F)

t →∗Gw a t1 · · · tn ti →∞G t ′i (∀i)

t →∞G a t ′1 · · · t ′n

and this reduction computes 〈G〉 whenever it exists (a decidable question).

This presentation allows coinductive reasoning on rewriting.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 19 / 48

Alternating tree automata

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 20 / 48

Alternating parity tree automata

For a MSO formula ϕ,

〈G〉 � ϕ

iff an equivalent APT Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 21 / 48

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 22 / 48

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 22 / 48

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

This infinite process produces a run-tree of Aϕ over 〈G〉.

It is an infinite, unranked tree.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 22 / 48

ATA vs. HORS

(λx . s) t →Gw s[x ← t]
s →Gw s ′

s t →Gw s ′ t

F →Gw R(F)

t →∗Gw a t1 tn ti : qij →∞G,A t ′i : qij

t : q →∞G,A (a (t ′11 : q11) · · · (t ′nkn
: qnkn)) : q

where the duplication “conforms to δ” (there is non-determinism).

Starting from S : q0, this computes run-trees of an ATA A over 〈G〉.

We get closer to type theory. . .

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 23 / 48

Alternating tree automata and intersection types

A key remark (Kobayashi 2009):

δ(q0, if) = (2, q0) ∧ (2, q1)

can be seen as the intersection typing

if : ∅ → (q0 ∧ q1)→ q0

refining the simple typing

if : o → o → o

(this talk is NOT about filter models!)

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 24 / 48

Alternating tree automata and intersection types

In a derivation typing if T1 T2 :

δ ∅ ` if : ∅ → (q0 ∧ q1)→ q0 ∅
App

∅ ` if T1 : (q0 ∧ q1)→ q0

...
Γ21 ` T2 : q0

...
Γ22 ` T2 : q1

App
Γ21, Γ22 ` if T1 T2 : q0

Intersection types naturally lift to higher-order – and thus to G, which
finitely represents 〈G〉.

Theorem (Kobayashi)

∅ ` S : q0 iff the ATA Aϕ has a run-tree over 〈G〉.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 25 / 48

A type-system for verification: without colours

Axiom
x :

∧
{i} θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1 q1j → . . . →
∧kn

j=1 qnj → q :: o → · · · → o

∆ ` t : (θ1 ∧ · · · ∧ θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ
App

∆ + ∆1 + . . . + ∆k ` t u : θ :: κ′

∆ , x :
∧

i∈I θi :: κ ` t : θ :: κ′

λ
∆ ` λ x . t :

(∧
i∈I θi

)
→ θ :: κ→ κ′

Γ ` R(F) : θ :: κ
fix

F : θ :: κ ` F : θ :: κ

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 26 / 48

An alternate proof

Non-idempotent types + extension of →∞G,A to typing trees:

π
...

Γ, x :
∧

i τi ` s : σ

Γ ` λx . s :
∧

i τi → σ

πi

...
Γi ` t : τi

Γ +
∑

i Γi ` (λx . s) t : σ

reduces to

π[x ← (πi)i]

...
Γ +

∑
i Γi ` s[x ← t] : σ

Note that quantitativity (= non-idempotence) makes this process linear.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 27 / 48

An alternate proof

If we consider the infinitary λ-term t(G) obtained by unfolding G, we get

Theorem

∅ ` t(G) : q0 iff the ATA Aφ has a run-tree over 〈G〉.

by proving coinductively an infinitary subject reduction property, using the
previous reduction for typing trees.

We can then “fold back” the result to HORS.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 28 / 48

Models of linear logic and HOMC

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 29 / 48

Intersection types and linear logic

A→ B = ! A(B

A program of type A→ B

duplicates or drops elements of A

and then

uses linearly (= once) each copy

Just as intersection types.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 30 / 48

Intersection types and linear logic

A→ B = ! A(B

Set [[o]] = Q. Two interpretations of the exponential modality:

Qualitative models
(Scott semantics)

! A = Pfin(A)

[[o → o]] = Pfin(Q)× Q

{q0, q0, q1} = {q0, q1}

Order closure

Quantitative models
(Relational semantics)

! A = Mfin(A)

[[o → o]] = Mfin(Q)× Q

[q0, q0, q1] 6= [q0, q1]

Unbounded multiplicities

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 30 / 48

Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

Rel

Ehrhard

��

Rel!oooo

��

Bucciareli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard , G−M

��

oo

Scott Scott!
oooo

Terui
// Idempotent typesoo

Fundamental idea: derivations of the intersection type systems compute
denotations in the associated model.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 31 / 48

Intersection types and linear logic

Models of linear logic and intersection types (refining simple types):

Rel

Ehrhard

��

Rel!oooo

��

Bucciareli−Ehrhard

de Carvalho
// Non-idempotent types

Ehrhard , G−M

��

oo

Scott Scott!
oooo

Terui
// Idempotent typesoo

[q0, q0, q1](q0_

��

� // q0 ∧ q0 ∧ q1 → q0_

��
{q0, q1}(q0

� // q0 ∧ q1 → q0

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 31 / 48

An example of interpretation

λx

λy

a q0

a q1

x q1x q1

a q0

y q1x q0

will be interpreted in the model as

([q0, q1, q1], [q1], q0)

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 32 / 48

Quantitative semantics and tree automata

If we add an inductive fixpoint operator to the relational semantics, we get:

Theorem (Grellois-Melliès)

In the relational semantics,

q0 ∈ [[G]] iff the ATA Aφ has a finite run-tree over 〈G〉.

Also true with qualitative semantics.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 33 / 48

An infinitary model of linear logic

Restrictions to finiteness: lack of a countable multiplicity ω.

Indeed, we consider tree constructors as free variables.

In Rel , we introduce a new exponential A 7→ A s.t.

[[A]] = Mcount([[A]])

(finite-or-countable multisets)

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 34 / 48

An infinitary model of linear logic

This defines an infinitary model of linear logic, which corresponds to

non-idempotent intersection types with countable multiplicities

and derivations of countable depth.

It admits a coinductive fixpoint, which we use to interpret Y .

Theorem (Grellois-Melliès)

In the infinitary relational semantics,

q0 ∈ [[G]] iff the ATA Aφ has a run-tree over 〈G〉.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 35 / 48

Parity conditions

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 36 / 48

Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 37 / 48

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � φ

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 38 / 48

Alternating parity tree automata

We add coloring informations to intersection types:

δ(q0, if) = (2, q0) ∧ (2, q1)

now corresponds to

if : ∅ →
(
�Ω(q0) q0 ∧�Ω(q1) q1

)
→ q0

Application computes the “local” maximum of colors, and the fixpoint
deals with the acceptance condition.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 39 / 48

Parity conditions

In this setting, t has some type �c1 σ1 ∧�c2 σ2 → τ .

The color labelling each occurence is the maximal color leading to it in the
normal form of t.

Proof: by studying the reduction of colored proof-trees.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 40 / 48

A type-system for verification (Grellois-Melliès 2014)

Axiom
x :

∧
{i} �ε θi :: κ ` x : θi :: κ

{ (i , qij) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} satisfies δA(q, a)
δ

∅ ` a :
∧k1

j=1�Ω(q1j) q1j → . . . →
∧kn

j=1�Ω(qnj) qnj → q :: o → · · · → o → o

∆ ` t : (�m1 θ1 ∧ · · · ∧�mk
θk)→ θ :: κ→ κ′ ∆i ` u : θi :: κ

App
∆ + �m1 ∆1 + . . . + �mk

∆k ` t u : θ :: κ′

Γ ` R(F) : θ :: κ
fix

F : �ε θ :: κ ` F : θ :: κ

∆ , x :
∧

i∈I �mi θi :: κ ` t : θ :: κ′

λ
∆ ` λ x . t :

(∧
i∈I �mi θi

)
→ θ :: κ→ κ′

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 41 / 48

A type-system for verification (Grellois-Melliès 2014)
This type system can have infinite-depth derivations, over which we recast
the parity condition.

Each infinite branch of a run-tree over 〈G〉 corresponds to an infinite
branch of the associated typing tree π, and is computed by an infinite
reduction.

Infinite branches of π have infinitely many occurences Fi of non-terminals.
The head normalization of Fi produces Ci [Fi+1] in finitely many steps.

The maximal color on the path from the root of Ci to Fi+1 is the same as
the one from Fi to Fi+1 in π. It is ε iff Ci is empty.

Non-terminals allow to conveniently factor the colors along a branch.

Theorem (G.-Melliès 2014, see also Kobayashi-Ong 2009)

S : q0 ` S : q0 admits a winning typing derivation iff A accepts 〈G〉.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 42 / 48

The coloring comonad

Our work shows that coloring is a modality. It defines a comonad in the
semantics:

� A = Col × A

which can be composed with , so that

if : ∅ →
(
�Ω(q0) q0 ∧�Ω(q1) q1

)
→ q0

corresponds to

[]([(Ω(q0), q0), (Ω(q1), q1)](q0 ∈ [[if]]

in the semantics.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 43 / 48

An inductive-coinductive fixpoint operator

We define an inductive-coinductive fixpoint operator on denotations, which
composes inductively or coinductively elements of the semantics, according
to the current color.

Theorem (G.-Melliès 2015)

A accepts 〈G〉 iff q0 ∈ [[G]].

But this model is infinitary, how to get decidability?

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 44 / 48

The final picture

Rel + � + Y

��

// Non-idempotent types + � + Y

��

oo

Scott + � + Y // Idempotent types + � + Yoo

Ehrhard 2012: “collapsing” Rel by forgetting multiplicities gives Scott.

We can enrich Scott with a coloring modality and a fixpoint operator, and
get the same result of HOMC.

We obtain decidability, by finiteness of the semantics.

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 45 / 48

The selection problem

Even better: the selection problem is decidable.

If Aφ accepts 〈G〉, we can compute effectively a new scheme G′ such that
〈G′〉 is a winning run-tree of Aφ over 〈G〉.

In other words: there is a higher-order winning run-tree.

(the key: annotate the rules with their denotation/their types).

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 46 / 48

The selection problem{
S = L Nil

L = λx . if x (L (data x))

becomes e.g.

Sq0 = L{q0, q1}(q0 Nilq0 Nilq1

L{q0, q1}(q0 = λx{q0, q1}.

if∅({q0, q1}(q0

L{q0}(q1

data{q0,q1}(q0

xq1xq0

L{q1}(q0

data{q0}(q1

xq0

L{q0}(q1 = · · ·
L{q1}(q0 = · · ·

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 47 / 48

Conclusion

Sort of static analysis of infinitary properties.

We lift to higher-order the behavior of APT.

Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

In finitary semantics, we obtain decidability of HOMC and of the
selection problem.

Thank you for your attention!

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 48 / 48

Conclusion

Sort of static analysis of infinitary properties.

We lift to higher-order the behavior of APT.

Coloring is a modality, stable by reduction in some sense, and can
therefore be added to models and type systems.

In finitary semantics, we obtain decidability of HOMC and of the
selection problem.

Thank you for your attention!

Charles Grellois (PPS - LIAFA - Dundee) Semantics and model-checking Aug 21, 2015 48 / 48

