
Relational semantics of linear logic
and higher-order model-checking

Charles Grellois Paul-André Melliès

PPS & LIAFA — Université Paris 7
University of Dundee

CSL — September 8, 2015
TU Berlin

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 1 / 24

Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program

Specify a property ϕ in an appropriate logic

Make them interact: the result is whether

M � ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ 7→ Aϕ

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 2 / 24

Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program → higher-order trees

Specify a property ϕ in an appropriate logic

Make them interact: the result is whether

M � ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ 7→ Aϕ

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 2 / 24

Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program → higher-order trees

Specify a property ϕ in an appropriate logic → MSO

Make them interact: the result is whether

M � ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ 7→ Aϕ

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 2 / 24

Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program → higher-order trees

Specify a property ϕ in an appropriate logic → MSO

Make them interact: the result is whether

M � ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ 7→ Aϕ

→ alternating parity tree automata (APT)

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 2 / 24

Trees and types
Model-checking of infinite trees of actions:

if

if

if
...data

data

Nil

data

Nil

Nil

Three actions here: Σ = { if : 2, data : 1, Nil : 0 }.

Call o the type of trees (and more generally of terms with free variables of
order ≤ 1, given by Σ)

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 3 / 24

Trees and types
An element of type o → o:

λx

if

if

if

...data

data

x

data

x

x

Applying it to Nil gives the previous tree.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 4 / 24

Trees and types

λΣ

if

if

if
...data

data

Nil

data

Nil

Nil

where “λΣ” stands for λif. λdata. λNil. , has type:

o(Σ)→ o = (o → o → o)→ (o → o)→ o → o

Church encoding of trees.
Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 5 / 24

Linear decomposition of the intuitionnistic arrow

In linear logic,

A→ B = !A(B

!A allows to duplicate or to drop A

(uses linearly (once) each copy

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 6 / 24

Linear decomposition of the intuitionnistic arrow

(o → o → o)→ (o → o)→ o → o

translates as

! (! o (! o (o)(! (! o (o)(! o (o

In the relational semantics of linear logic, with [[o]] = Q,

[[!A]] = Mfin([[A]]) and [[A(B]] = [[A]]× [[B]]

For instance,

[[o → o → o]] = Mfin(Q)×Mfin(Q)× Q

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 6 / 24

Linear decomposition of the intuitionnistic arrow

(o → o → o)→ (o → o)→ o → o

translates as

! (! o (! o (o)(! (! o (o)(! o (o

Complain: where is model-checking?

We mentioned alternating parity tree automata. . .

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 6 / 24

Alternating parity tree automata

For a MSO formula ϕ,

〈G〉 � ϕ

iff an equivalent APT Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 7 / 24

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 8 / 24

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 8 / 24

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

In fact, if has the linear type

if : ! o (! o (o

so that in the relational semantics of linear logic, setting [[o]] = Q,

[[if]] ⊆Mfin(Q)×Mfin(Q)× Q

and

([], [q0, q1], q0) ∈ [[if]]

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 8 / 24

Model-checking I

An alternating tree automaton over Σ, with set of states Q, of transition
function δ, provides

[[δ]] = [[if]]× [[data]]× [[Nil]] ⊆ [[o(Σ)]]

while a tree t over Σ gives, under Church encoding:

[[t]] ⊆ [[o(Σ)→ o]] = Mfin ([[o(Σ)]])× Q

Relational composition:

[[t]] ◦ Mfin([[δ]]) ⊆ Q

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 9 / 24

Model-checking I

An alternating tree automaton over Σ, with set of states Q, of transition
function δ, provides

[[δ]] = [[if]]× [[data]]× [[Nil]] ⊆ [[o(Σ)]]

while a tree t over Σ gives, under Church encoding:

[[t]] ⊆ [[o(Σ)→ o]] = Mfin ([[o(Σ)]])× Q

Relational composition:

[[t]] ◦ Mfin([[δ]]) ⊆ Q

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 9 / 24

Model-checking I

Relational composition:

[[t]] ◦ Mfin([[δ]]) ⊆ Q

Proposition

[[t]] ◦ Mfin([[δ]])

is the set of states q from which

A = 〈Σ, Q, δ, q 〉

accepts the tree t.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 10 / 24

Model-checking I
Rel is a denotational model:

t →β t ′ =⇒ [[t]] = [[t ′]]

Corollary

For a term
t : o(Σ)→ o

(= normalizing to a finite Σ-labelled ranked tree),

[[t]] ◦ Mfin([[δ]])

is the set of states q from which

A = 〈Σ, Q, δ, q 〉

accepts the tree < t > generated by the normalization of t.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 11 / 24

Higher-order model-checking

We want to model-check

higher-order trees (“non-regular, yet of finite representation”), as

if

if

if
...data

data

Nil

data

Nil

Nil

and to account for parity conditions.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 12 / 24

Higher-order recursion schemes

if

if

if
...data

data

Nil

data

Nil

Nil

is represented as the higher-order recursion scheme (HORS)

G =

{
S = L Nil

L x = if x (L (data x))

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 13 / 24

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

Rewriting starts from the start symbol S:

S →G

L

Nil

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 14 / 24

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

L

Nil

→G

if

L

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 14 / 24

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

if

L

data

Nil

Nil

→G

if

if

L

data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 14 / 24

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

〈G〉 is an infinite
non-regular tree.

It is our model M.

if

if

if

...data

data

Nil

data

Nil

Nil

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 14 / 24

Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x))

HORS can alternatively be seen as an extension of the simply-typed
λ-terms we considered so far, with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

Here : G ! (Yo→o (λL.λx .if x (L (data x)))) Nil

So we need to add fixpoints to the relational model.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 14 / 24

Model-checking II

Rel has an inductive fixpoint operator (finite iteration). We obtain:

Theorem

For a λY -term
t : o(Σ)→ o

(= normalizing to an infinite Σ-labelled ranked tree),

[[t]] ◦ Mfin([[δ]])

is the set of states q from which

A = 〈Σ, Q, δ, q 〉

accepts the tree < t > generated by the coinductive normalization of t

during a finite execution

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 15 / 24

On finiteness

Why a finite execution?

Because constructors = free variables.

Infinite trees need infinite multisets.

So we define a new exponential

 : A 7→ Mcount(A)

The resulting model has a coinductive operator (≈ infinite fixpoint
unfolding).

(see G.-Melliès, Fossacs 2015)

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 16 / 24

Model-checking III

With the coinductive fixpoint of this infinitary model:

Theorem

For a λY -term
t : o(Σ)→ o

(= normalizing to an infinite Σ-labelled ranked tree),

[[t]] ◦ Mfin([[δ]])

is the set of states q from which

A = 〈Σ, Q, δ, q 〉

accepts the tree < t > generated by the coinductive normalization of t

during a finite or infinite execution

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 17 / 24

Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 18 / 24

Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � φ

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 19 / 24

The coloring comonad

In the proceedings paper, we show that coloring is a modality.
It defines a comonad in the semantics:

� A = Col × A

which can be composed with , giving an infinitary, colored model of linear
logic in which

δ(q0, if) = (2, q0) ∧ (2, q1)

corresponds to

([], [(Ω(q0), q0), (Ω(q1), q1)], q0) ∈ [[if]]

in the semantics.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 20 / 24

Parity conditions

In this setting, t has some type �c1 σ1 ∧�c2 σ2 → τ .

The color labelling each occurence is the maximal color leading to it in the
normal form of t.

On applications, the comonad computes the maximal color (inductive
treatment).

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 21 / 24

Model-checking IV
We define an inductive-coinductive fixpoint operator on denotations, which
iterates finitely or infinitely depending on the current color.
It is a Conway operator (Bloom-Esik).

Theorem

For a λY -term
t : o(Σ)→ o

(= normalizing to an infinite Σ-labelled ranked tree),

[[t]] ◦ Mfin([[δ]])

is the set of states q from which the alternating parity automaton

A = 〈Σ, Q, δ, q 〉

accepts the tree < t > generated by the coinductive normalization of t.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 22 / 24

Model-checking V

Ehrhard 2012: ScottL is the extensional collapse of Rel .

G.-Melliès, MFCS 2015: adaptation to ScottL of the theoretical approach
of this work.

Corollary

The higher-order model-checking problem is decidable.

The resulting model is similar in the spirit to the one of Salvati and
Walukiewicz, with subtle differences, notably on color handling and
composition of morphisms.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 23 / 24

Conclusion

Linear logic reveals a very natural duality between terms and
(alternating) automata.

Models can be extended to handle additional conditions on automata
(parity. . .)

Relational semantics are infinitary, but their simplicity eases
theoretical reasoning on problems.

In the proceedings:

More on the duality aspects, and on the extended relational semantics.

Discussion on the modal nature of coloring, and its relations with
prior work of Kobayashi and Ong.

Technical work is based on an equivalent intersection type system.

Thank you for your attention!

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 24 / 24

Conclusion

Linear logic reveals a very natural duality between terms and
(alternating) automata.

Models can be extended to handle additional conditions on automata
(parity. . .)

Relational semantics are infinitary, but their simplicity eases
theoretical reasoning on problems.

In the proceedings:

More on the duality aspects, and on the extended relational semantics.

Discussion on the modal nature of coloring, and its relations with
prior work of Kobayashi and Ong.

Technical work is based on an equivalent intersection type system.

Thank you for your attention!

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking Sept 8, 2015 24 / 24

