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Model-checking higher-order programs

A well-known approach in verification: model-checking.

Construct a model M of a program

Specify a property ϕ in an appropriate logic

Make them interact: the result is whether

M � ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ 7→ Aϕ
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Specify a property ϕ in an appropriate logic → MSO

Make them interact: the result is whether

M � ϕ

When the model is a word, a tree. . . of actions: translate ϕ to an
equivalent automaton:

ϕ 7→ Aϕ

→ alternating parity tree automata (APT)
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Trees and types
Model-checking of infinite trees of actions:

if

if

if
...data

data

Nil

data

Nil

Nil

Three actions here: Σ = { if : 2, data : 1, Nil : 0 }.

Call o the type of trees (and more generally of terms with free variables of
order ≤ 1, given by Σ)
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Trees and types
An element of type o → o:

λx

if

if

if

...data

data

x

data

x

x

Applying it to Nil gives the previous tree.
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Trees and types

λΣ

if

if

if
...data

data

Nil

data

Nil

Nil

where “λΣ” stands for λif. λdata. λNil. , has type:

o(Σ)→ o = (o → o → o)→ (o → o)→ o → o

Church encoding of trees.
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Linear decomposition of the intuitionnistic arrow

In linear logic,

A→ B = !A( B

!A allows to duplicate or to drop A

( uses linearly (once) each copy
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Linear decomposition of the intuitionnistic arrow

(o → o → o)→ (o → o)→ o → o

translates as

! (! o ( ! o ( o)( ! (! o ( o)( ! o ( o

In the relational semantics of linear logic, with [[o]] = Q,

[[!A]] = Mfin([[A]]) and [[A( B]] = [[A]]× [[B]]

For instance,

[[o → o → o]] = Mfin(Q)×Mfin(Q)× Q
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Linear decomposition of the intuitionnistic arrow

(o → o → o)→ (o → o)→ o → o

translates as

! (! o ( ! o ( o)( ! (! o ( o)( ! o ( o

Complain: where is model-checking?

We mentioned alternating parity tree automata. . .
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Alternating parity tree automata

For a MSO formula ϕ,

〈G〉 � ϕ

iff an equivalent APT Aϕ has a run over 〈G〉.

APT = alternating tree automata (ATA) + parity condition.
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

if q0

if

if

...data

data

Nil

data

Nil

Nil

−→Aϕ

if q0

if q1

if

...data

data

Nil

data

Nil

if q0

if

...data

data

Nil

data

Nil
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Alternating tree automata

ATA: non-deterministic tree automata whose transitions may
duplicate or drop a subtree.

Typically: δ(q0, if) = (2, q0) ∧ (2, q1).

In fact, if has the linear type

if : ! o ( ! o ( o

so that in the relational semantics of linear logic, setting [[o]] = Q,

[[if]] ⊆Mfin(Q)×Mfin(Q)× Q

and

([], [q0, q1], q0) ∈ [[if]]
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Model-checking I

An alternating tree automaton over Σ, with set of states Q, of transition
function δ, provides

[[δ]] = [[if]]× [[data]]× [[Nil]] ⊆ [[o(Σ)]]

while a tree t over Σ gives, under Church encoding:

[[t]] ⊆ [[o(Σ)→ o]] = Mfin ([[o(Σ)]])× Q

Relational composition:

[[t]] ◦ Mfin([[δ]]) ⊆ Q
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Model-checking I

Relational composition:

[[t]] ◦ Mfin([[δ]]) ⊆ Q

Proposition

[[t]] ◦ Mfin([[δ]])

is the set of states q from which

A = 〈Σ, Q, δ, q 〉

accepts the tree t.
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Model-checking I
Rel is a denotational model:

t →β t ′ =⇒ [[t]] = [[t ′]]

Corollary

For a term
t : o(Σ)→ o

(= normalizing to a finite Σ-labelled ranked tree),

[[t]] ◦ Mfin([[δ]])

is the set of states q from which

A = 〈Σ, Q, δ, q 〉

accepts the tree < t > generated by the normalization of t.
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Higher-order model-checking

We want to model-check

higher-order trees (“non-regular, yet of finite representation”), as

if

if

if
...data

data

Nil

data

Nil

Nil

and to account for parity conditions.
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Higher-order recursion schemes

if

if

if
...data

data

Nil

data

Nil

Nil

is represented as the higher-order recursion scheme (HORS)

G =

{
S = L Nil

L x = if x (L (data x ) )
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

Rewriting starts from the start symbol S:

S →G

L

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

L

Nil

→G

if

L

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil
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if

L

data

Nil

Nil
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if

if

L

data
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

〈G〉 is an infinite
non-regular tree.

It is our model M.

if

if

if

...data

data

Nil

data

Nil

Nil
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Higher-order recursion schemes

G =

{
S = L Nil

L x = if x (L (data x ) )

HORS can alternatively be seen as an extension of the simply-typed
λ-terms we considered so far, with

simply-typed recursion operators Yσ : (σ → σ)→ σ.

Here : G ! (Yo→o (λL.λx .if x (L (data x)))) Nil

So we need to add fixpoints to the relational model.
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Model-checking II

Rel has an inductive fixpoint operator (finite iteration). We obtain:

Theorem

For a λY -term
t : o(Σ)→ o

(= normalizing to an infinite Σ-labelled ranked tree),

[[t]] ◦ Mfin([[δ]])

is the set of states q from which

A = 〈Σ, Q, δ, q 〉

accepts the tree < t > generated by the coinductive normalization of t

during a finite execution
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On finiteness

Why a finite execution?

Because constructors = free variables.

Infinite trees need infinite multisets.

So we define a new exponential

 : A 7→ Mcount(A)

The resulting model has a coinductive operator (≈ infinite fixpoint
unfolding).

(see G.-Melliès, Fossacs 2015)
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Model-checking III

With the coinductive fixpoint of this infinitary model:

Theorem

For a λY -term
t : o(Σ)→ o

(= normalizing to an infinite Σ-labelled ranked tree),

[[t]] ◦ Mfin([[δ]])

is the set of states q from which

A = 〈Σ, Q, δ, q 〉

accepts the tree < t > generated by the coinductive normalization of t

during a finite or infinite execution
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Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

“a given operation is executed infinitely often in some execution”

or

“after a read operation, a write eventually occurs”.
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Alternating parity tree automata

Each state of an APT is attributed a color

Ω(q) ∈ Col ⊆ N

An infinite branch of a run-tree is winning iff the maximal color among the
ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula ϕ:

Aϕ has a winning run-tree over 〈G〉 iff 〈G〉 � φ
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The coloring comonad

In the proceedings paper, we show that coloring is a modality.
It defines a comonad in the semantics:

� A = Col × A

which can be composed with  , giving an infinitary, colored model of linear
logic in which

δ(q0, if) = (2, q0) ∧ (2, q1)

corresponds to

([], [(Ω(q0), q0), (Ω(q1), q1)], q0) ∈ [[if]]

in the semantics.
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Parity conditions

In this setting, t has some type �c1 σ1 ∧�c2 σ2 → τ .

The color labelling each occurence is the maximal color leading to it in the
normal form of t.

On applications, the comonad computes the maximal color (inductive
treatment).
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Model-checking IV
We define an inductive-coinductive fixpoint operator on denotations, which
iterates finitely or infinitely depending on the current color.
It is a Conway operator (Bloom-Esik).

Theorem

For a λY -term
t : o(Σ)→ o

(= normalizing to an infinite Σ-labelled ranked tree),

[[t]] ◦ Mfin([[δ]])

is the set of states q from which the alternating parity automaton

A = 〈Σ, Q, δ, q 〉

accepts the tree < t > generated by the coinductive normalization of t.
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Model-checking V

Ehrhard 2012: ScottL is the extensional collapse of Rel .

G.-Melliès, MFCS 2015: adaptation to ScottL of the theoretical approach
of this work.

Corollary

The higher-order model-checking problem is decidable.

The resulting model is similar in the spirit to the one of Salvati and
Walukiewicz, with subtle differences, notably on color handling and
composition of morphisms.
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Conclusion

Linear logic reveals a very natural duality between terms and
(alternating) automata.

Models can be extended to handle additional conditions on automata
(parity. . . )

Relational semantics are infinitary, but their simplicity eases
theoretical reasoning on problems.

In the proceedings:

More on the duality aspects, and on the extended relational semantics.

Discussion on the modal nature of coloring, and its relations with
prior work of Kobayashi and Ong.

Technical work is based on an equivalent intersection type system.

Thank you for your attention!
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