Relational semantics of linear logic and higher-order model-checking

Charles Grellois Paul-André Melliès

PPS & LIAFA — Université Paris 7 University of Dundee

CSL — September 8, 2015 TU Berlin

A well-known approach in verification: model-checking.

- \bullet Construct a model ${\mathcal M}$ of a program
- Specify a property φ in an appropriate logic
- Make them interact: the result is whether

 $\mathcal{M} \models \varphi$

When the model is a word, a tree. . . of actions: translate φ to an equivalent automaton:

$$\varphi \mapsto \mathcal{A}_{\varphi}$$

A well-known approach in verification: model-checking.

- Construct a model ${\mathcal M}$ of a program \to higher-order trees
- Specify a property φ in an appropriate logic
- Make them interact: the result is whether

$$\mathcal{M} \models \varphi$$

When the model is a word, a tree. . . of actions: translate φ to an equivalent automaton:

$$\varphi \mapsto \mathcal{A}_{\varphi}$$

A well-known approach in verification: model-checking.

- Construct a model ${\mathcal M}$ of a program \to higher-order trees
- Specify a property φ in an appropriate logic \rightarrow MSO
- Make them interact: the result is whether

$$\mathcal{M} \models \varphi$$

When the model is a word, a tree. . . of actions: translate φ to an equivalent automaton:

$$\varphi \mapsto \mathcal{A}_{\varphi}$$

A well-known approach in verification: model-checking.

- Construct a model ${\mathcal M}$ of a program \to higher-order trees
- Specify a property φ in an appropriate logic \rightarrow MSO
- Make them interact: the result is whether

$$\mathcal{M} \models \varphi$$

When the model is a word, a tree. . . of actions: translate φ to an equivalent automaton:

$$\varphi \mapsto \mathcal{A}_{\varphi}$$

 \rightarrow alternating parity tree automata (APT)

Trees and types Model-checking of infinite trees of actions:

Three actions here: $\Sigma = \{ if : 2, data : 1, Nil : 0 \}.$

Call *o* the type of trees (and more generally of terms with free variables of order ≤ 1 , given by Σ)

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking

Sept 8, 2015 3 / 24

Trees and types

An element of type $o \rightarrow o$:

Applying it to Nil gives the previous tree.

Trees and types

where " $\lambda \Sigma$ " stands for λ if. λ data. λ Nil., has type:

 $o(\Sigma)
ightarrow o = (o
ightarrow o
ightarrow o)
ightarrow (o
ightarrow o)
ightarrow o
ightarrow o$

Church encoding of trees.

Charles Grellois (PPS - LIAFA - Dundee) Relational semantics and model-checking

Sept 8, 2015 5 / 24

Linear decomposition of the intuitionnistic arrow In linear logic,

 $A \rightarrow B = !A \multimap B$

! A allows to duplicate or to drop A

- uses linearly (once) each copy

Linear decomposition of the intuitionnistic arrow

$$(o
ightarrow o
ightarrow o)
ightarrow (o
ightarrow o)
ightarrow o
ightarrow o$$

translates as

$$!(! \circ \multimap ! \circ \multimap \circ) \multimap !(! \circ \multimap \circ) \multimap ! \circ \multimap \circ$$

In the relational semantics of linear logic, with [o] = Q,

 $\llbracket A \rrbracket = \mathcal{M}_{fin}(\llbracket A \rrbracket) \text{ and } \llbracket A \multimap B \rrbracket = \llbracket A \rrbracket \times \llbracket B \rrbracket$ For instance,

$$\llbracket o
ightarrow o
ightarrow e
rbrace = \mathcal{M}_{\mathit{fin}}(Q) imes \mathcal{M}_{\mathit{fin}}(Q) imes Q$$

Linear decomposition of the intuitionnistic arrow

$$(o
ightarrow o
ightarrow o)
ightarrow (o
ightarrow o)
ightarrow o
ightarrow o$$

translates as

$$!(! \circ \multimap ! \circ \multimap \circ) \multimap !(! \circ \multimap \circ) \multimap ! \circ \multimap \circ$$

Complain: where is model-checking?

We mentioned alternating parity tree automata...

Alternating parity tree automata

For a MSO formula φ ,

$$\langle \mathcal{G} \rangle \models \varphi$$

iff an equivalent APT \mathcal{A}_{φ} has a run over $\langle \mathcal{G} \rangle$.

APT = alternating tree automata (ATA) + parity condition.

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, if) = (2, q_0) \land (2, q_1).$

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, if) = (2, q_0) \wedge (2, q_1)$.

Alternating tree automata

ATA: non-deterministic tree automata whose transitions may duplicate or drop a subtree.

Typically: $\delta(q_0, if) = (2, q_0) \wedge (2, q_1)$.

In fact, if has the linear type

if $: ! o \multimap ! o \multimap o$

so that in the relational semantics of linear logic, setting [o] = Q,

 $\llbracket \texttt{if}
rbrace \subseteq \mathcal{M}_{\mathit{fin}}(Q) imes \mathcal{M}_{\mathit{fin}}(Q) imes Q$

and

```
([], [q_0, q_1], q_0) \in [[if]]
```

• • = • • = •

Model-checking I

An alternating tree automaton over Σ , with set of states Q, of transition function δ , provides

$\llbracket \delta \rrbracket \ = \ \llbracket \texttt{if} \rrbracket \times \llbracket \texttt{data} \rrbracket \times \llbracket \texttt{Nil} \rrbracket \ \subseteq \ \llbracket o(\Sigma) \rrbracket$

while a tree t over Σ gives, under Church encoding:

$\llbracket t \rrbracket \subseteq \llbracket o(\Sigma) o o \rrbracket = \mathcal{M}_{\textit{fin}}\left(\llbracket o(\Sigma) \rrbracket\right) imes Q$

Relational composition:

$\llbracket t \rrbracket \circ \mathcal{M}_{fin}(\llbracket \delta \rrbracket) \subseteq Q$

Model-checking I

An alternating tree automaton over Σ , with set of states Q, of transition function δ , provides

$\llbracket \delta \rrbracket \ = \ \llbracket \texttt{if} \rrbracket \times \llbracket \texttt{data} \rrbracket \times \llbracket \texttt{Nil} \rrbracket \ \subseteq \ \llbracket o(\Sigma) \rrbracket$

while a tree t over Σ gives, under Church encoding:

$\llbracket t \rrbracket \subseteq \llbracket o(\Sigma) \to o \rrbracket = \mathcal{M}_{fin}\left(\llbracket o(\Sigma) \rrbracket\right) \times Q$

Relational composition:

$\llbracket t \rrbracket \circ \mathcal{M}_{fin}(\llbracket \delta \rrbracket) \subseteq Q$

Model-checking I

Relational composition:

$\llbracket t \rrbracket \circ \mathcal{M}_{fin}(\llbracket \delta \rrbracket) \subseteq Q$

Proposition

 $\llbracket t \rrbracket \circ \mathcal{M}_{fin}(\llbracket \delta \rrbracket)$

is the set of states q from which

 $\mathcal{A} = \langle \Sigma, Q, \delta, q \rangle$

accepts the tree t.

Model-checking I *Rel* is a denotational model:

$$t \rightarrow_{\beta} t' \implies \llbracket t \rrbracket = \llbracket t' \rrbracket$$

Corollary

For a term

 $t : o(\Sigma) \rightarrow o$

(= normalizing to a finite Σ -labelled ranked tree),

 $\llbracket t \rrbracket \circ \mathcal{M}_{fin}(\llbracket \delta \rrbracket)$

is the set of states q from which

 $\mathcal{A} = \langle \Sigma, Q, \delta, q \rangle$

accepts the tree < t > generated by the normalization of t.

Higher-order model-checking

We want to model-check

• higher-order trees ("non-regular, yet of finite representation"), as

• and to account for parity conditions.

is represented as the higher-order recursion scheme (HORS)

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

1

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

Rewriting starts from the start symbol S:

1

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

Sept 8, 2015 14 / 24

1

$$\mathcal{G} = \begin{cases} S = L \text{ Nil} \\ L x = \text{ if } x (L (data x)) \end{cases}$$

HORS can alternatively be seen as an extension of the simply-typed $\lambda\text{-terms}$ we considered so far, with

simply-typed recursion operators Y_{σ} : $(\sigma \rightarrow \sigma) \rightarrow \sigma$.

Here :
$$\mathcal{G} \iff (Y_{o \to o} (\lambda L.\lambda x.if x (L(data x))))$$
 Nil

So we need to add fixpoints to the relational model.

Model-checking II

Rel has an inductive fixpoint operator (finite iteration). We obtain:

Theorem

For a λY -term

 $t : o(\Sigma) \rightarrow o$

(= normalizing to an infinite Σ -labelled ranked tree),

 $\llbracket t \rrbracket \circ \mathcal{M}_{fin}(\llbracket \delta \rrbracket)$

is the set of states q from which

 $\mathcal{A} = \langle \Sigma, Q, \delta, q \rangle$

accepts the tree < t > generated by the coinductive normalization of t

during a finite execution

On finiteness

Why a finite execution?

Because constructors = free variables.

Infinite trees need infinite multisets.

So we define a new exponential

 $\oint : A \mapsto \mathcal{M}_{count}(A)$

The resulting model has a coinductive operator (\approx infinite fixpoint unfolding).

```
(see G.-Melliès, Fossacs 2015)
```

Model-checking III

With the coinductive fixpoint of this infinitary model:

Theorem

For a λY -term

 $t : o(\Sigma) \rightarrow o$

(= normalizing to an infinite Σ -labelled ranked tree),

 $\llbracket t \rrbracket \circ \mathcal{M}_{fin}(\llbracket \delta \rrbracket)$

is the set of states q from which

 $\mathcal{A} = \langle \Sigma, Q, \delta, q \rangle$

accepts the tree < t > generated by the coinductive normalization of t

during a finite or infinite execution

Alternating parity tree automata

MSO allows to discriminate inductive from coinductive behaviour.

This allows to express properties as

"a given operation is executed infinitely often in some execution"

or

"after a read operation, a write eventually occurs".

Alternating parity tree automata

Each state of an APT is attributed a color

 $\Omega(q) \in \mathit{Col} \subseteq \mathbb{N}$

An infinite branch of a run-tree is winning iff the maximal color among the ones occuring infinitely often along it is even.

A run-tree is winning iff all its infinite branches are.

For a MSO formula φ :

 \mathcal{A}_{φ} has a winning run-tree over $\langle \mathcal{G} \rangle$ iff $\langle \mathcal{G} \rangle \models \phi$

The coloring comonad

In the proceedings paper, we show that coloring is a modality. It defines a comonad in the semantics:

 $\Box A = Col \times A$

which can be composed with \oint , giving an infinitary, colored model of linear logic in which

$$\delta(q_0, \texttt{if}) = (2, q_0) \wedge (2, q_1)$$

corresponds to

$$([], [(\Omega(q_0), q_0), (\Omega(q_1), q_1)], q_0) \in \llbracket if \rrbracket$$

in the semantics.

Parity conditions

In this setting, t has some type $\Box_{c_1} \sigma_1 \land \Box_{c_2} \sigma_2 \to \tau$.

The color labelling each occurence is the maximal color leading to it in the normal form of t.

On applications, the comonad computes the maximal color (inductive treatment).

Model-checking IV

We define an inductive-coinductive fixpoint operator on denotations, which iterates finitely or infinitely depending on the current color. It is a Conway operator (Bloom-Esik).

Theorem

For a λY -term

 $t : o(\Sigma) \rightarrow o$

(= normalizing to an infinite Σ -labelled ranked tree),

 $\llbracket t \rrbracket \circ \mathcal{M}_{fin}(\llbracket \delta \rrbracket)$

is the set of states q from which the alternating parity automaton

 $\mathcal{A} = \langle \Sigma, Q, \delta, q \rangle$

accepts the tree < t > generated by the coinductive normalization of t.

Model-checking V

Ehrhard 2012: ScottL is the extensional collapse of Rel.

G.-Melliès, MFCS 2015: adaptation to *ScottL* of the theoretical approach of this work.

Corollary

The higher-order model-checking problem is decidable.

The resulting model is similar in the spirit to the one of Salvati and Walukiewicz, with subtle differences, notably on color handling and composition of morphisms.

Conclusion

- Linear logic reveals a very natural duality between terms and (alternating) automata.
- Models can be extended to handle additional conditions on automata (parity...)
- Relational semantics are infinitary, but their simplicity eases theoretical reasoning on problems.

In the proceedings:

- More on the duality aspects, and on the extended relational semantics.
- Discussion on the modal nature of coloring, and its relations with prior work of Kobayashi and Ong.
- Technical work is based on an equivalent intersection type system.

Thank you for your attention!

Conclusion

- Linear logic reveals a very natural duality between terms and (alternating) automata.
- Models can be extended to handle additional conditions on automata (parity...)
- Relational semantics are infinitary, but their simplicity eases theoretical reasoning on problems.

In the proceedings:

- More on the duality aspects, and on the extended relational semantics.
- Discussion on the modal nature of coloring, and its relations with prior work of Kobayashi and Ong.
- Technical work is based on an equivalent intersection type system.

Thank you for your attention!